BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing. (http://www.bionmr.com/forum/journal-club-9/automated-assignment-nmr-spectra-macroscopically-oriented-proteins-using-simulated-annealing-26174/)

nmrlearner 06-20-2018 08:56 PM

Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.
 
Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.

Related Articles Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.

J Magn Reson. 2018 Jun 16;293:104-114

Authors: Lapin J, Nevzorov AA

Abstract
An automated technique for the sequential assignment of NMR backbone resonances of oriented protein samples has been developed and tested based on 15N-15N homonuclear exchange and spin-exchanged separated local-field spectra. By treating the experimental spectral intensity as a pseudopotential, the Monte-Carlo Simulated Annealing algorithm has been employed to seek lowest-energy assignment solutions over a large sampling space where direct enumeration would be unfeasible. The determined sequential assignments have been scored based on the positions of the crosspeaks resulting from the possible orders for the main peaks. This approach is versatile in terms of the parameters that can be specified to achieve the best-fit result. At a minimum the algorithm requires a continuous segment of the main-peak chemical shifts obtained from a uniformly labeled sample and a spin-exchanged experimental spectrum represented as a 2D matrix array. With selective labeling experiments, groups of chemical shifts corresponding to specific locations in the protein backbone can be fixed, thereby decreasing the sampling space. The output from the program consists of a list of top-score main peak assignments, which can be subjected to further scoring criteria until a consensus solution is found. The algorithm has first been tested on a synthetic spectrum with randomly generated chemical shifts and dipolar couplings for the main peaks. The original assignments have been successfully recovered for as many as 100 main peaks when residue-type information was used even in the presence of substantial spectral peak overlap. The algorithm was then applied to assigning two sets of experimental spectra to recover and confirm the previously established assignments in an automated fashion. For the 20-residue transmembrane domain of Pf1 coat protein reconstituted in magnetically aligned bicelles, the original assignment by Park et al. (2010) was recovered by the automated algorithm with additional input from 5 selectively labeled amino acid spectra. The second case considered was the 46 residue Pf1 bacteriophage from Thiriot et al. (2005) and Knox et al. (2010), of which 38 residues were fit. Automated fitting resulted in several possible assignments but not exactly the original assignment. By using a post-fitting filtering procedure based on the number of missed cross peaks and Pf1 helical structure, a consensus spectroscopic assignment is proposed covering 84% of the original assignment. While the automated assignment works best in spectra with well-resolved crosspeaks, it also tolerates substantial spectral crowding to yield reasonable assignments in the cases where ambiguity and degeneracy of possible assignment solutions are inevitable.


PMID: 29920407 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 08:35 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013