BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 10:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligo

Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR.

Related Articles Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR.

Biochemistry. 2004 Nov 9;43(44):13926-31

Authors: Sandström C, Berteau O, Gemma E, Oscarson S, Kenne L, Gronenborn AM

The minimum oligosaccharide structure required for binding to the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by saturation-transfer difference (STD) NMR spectroscopy. Despite the low molecular mass of the protein (11 kDa), STD-NMR spectroscopy allowed the precise atomic mapping of the interactions between CV-N and various di- and trimannosides, substructures of Man-9, the predominant oligosaccharide on the HIV viral surface glycoprotein gp120. Contacts with mannosides containing the terminal Manalpha(1-->2)Manalpha unit of Man-9 were observed, while (1-->3)- and (1-6)-linked di- and trimannosides showed no interactions, demonstrating that the terminal Manalpha(1-->2)Manalpha structure plays a key role in the interaction. Precise epitope mapping revealed that, for Manalpha(1-->2)ManalphaOMe, Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe, and Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe, the protein is in close contact with H2, H3, and H4 of the nonreducing terminal mannose unit. In contrast, the STD-NMR spectrum of the CV-N/trisaccharide Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe complex was markedly different, with resonances on all sugar units displaying equal enhancements, suggesting that CV-N is able to discriminate between the three structurally related trisaccharides.

PMID: 15518540 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja203686t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. J Am Chem Soc. 2011 Jun 6; Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner Journal club 0 06-07-2011 11:05 AM
A natural and readily available crowding agent: NMR studies of proteins in hen egg white.
A natural and readily available crowding agent: NMR studies of proteins in hen egg white. A natural and readily available crowding agent: NMR studies of proteins in hen egg white. Proteins. 2010 Dec 13; Authors: Martorell G, Adrover M, Kelly G, Temussi PA, Pastore A In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems,...
nmrlearner Journal club 0 02-22-2011 10:40 PM
[NMR paper] Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble
Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Related Articles Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 2005 Jan 19;127(2):476-7 Authors: Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM The intrinsically disordered protein alpha-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD). We show here that the native state of alpha-synuclein...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] A caged lanthanide complex as a paramagnetic shift agent for protein NMR.
A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Related Articles A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chemistry. 2004 Jul 5;10(13):3252-60 Authors: Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy ME, Hupkes HJ, Kosters W, Impagliazzo A, Ubbink M A lanthanide complex, named CLaNP (caged lanthanide NMR probe) has been developed for the characterisation of proteins by paramagnetic NMR spectroscopy. The probe consists of a lanthanide chelated by a derivative of DTPA...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Epitope mapping of ligand-receptor interactions by diffusion NMR.
Epitope mapping of ligand-receptor interactions by diffusion NMR. Related Articles Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc. 2002 Aug 28;124(34):9984-5 Authors: Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR) David S Burz, Kaushik Dutta, David Cowburn & Alexander Shekhtman We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define...
sivanmr Journal club 0 01-27-2006 11:26 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:31 AM.


Map