BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-18-2010, 09:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR.

Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR.

Related Articles Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR.

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6880-4

Authors: Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI

The recently cloned uncoupling protein homolog UCP3 is expressed primarily in muscle and therefore may play a significant role in the regulation of energy expenditure and body weight. However, investigation into the regulation of uncoupling protein has been hampered by the inability to assess its activity in vivo. In this report, we demonstrate the use of a noninvasive NMR technique to assess mitochondrial energy uncoupling in skeletal muscle of awake rats by combining (13)C NMR to measure rates of mitochondrial substrate oxidation with (31)P NMR to assess unidirectional ATP synthesis flux. These combined (31)P/(13)C NMR measurements were performed in control, 10-day triiodo-l-thyronine (T(3))-treated (model of increased UCP3 expression), and acute 2,4-dinitrophenol (DNP)-treated (protonophore and mitochondrial uncoupler) rats. UCP3 mRNA and protein levels increased 8.1-fold (+/- 1.1) and 2.8-fold (+/- 0.8), respectively, in the T(3)-treated vs. control rat gastrocnemius muscle. (13)C NMR measurements of tricarboxylic acid cycle flux as an index of mitochondrial substrate oxidation were 61 +/- 21, 148 +/- 25, and 310 +/- 48 nmol/g per min in the control, T(3), and DNP groups, respectively. (31)P NMR saturation transfer measurements of unidirectional ATP synthesis flux were 83 +/- 14, 84 +/- 14, and 73 +/- 7 nmol/g per s in the control, T(3), and DNP groups, respectively. Together, these flux measurements, when normalized to the control group, suggest that acute administration of DNP (mitochondrial uncoupler) and chronic administration of T(3) decrease energy coupling by approximately 80% and approximately 60%, respectively, and that the latter treatment correlates with an increase in UCP3 mRNA and protein expression. This NMR approach could prove useful for exploring the regulation of uncoupling protein activity in vivo and elucidating its role in energy metabolism and obesity.

PMID: 10823916 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR identification of the Tom20 binding segment in mitochondrial presequences.
NMR identification of the Tom20 binding segment in mitochondrial presequences. Related Articles NMR identification of the Tom20 binding segment in mitochondrial presequences. J Mol Biol. 2001 Feb 16;306(2):137-43 Authors: Muto T, Obita T, Abe Y, Shodai T, Endo T, Kohda D Many mitochondrial proteins are synthesized in the cytosol as precursors with N-terminal presequences, and are imported into mitochondria with the aid of translocator protein complexes containing presequence-binding proteins. Tom20, a receptor protein which functions in an...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake f
13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression. Related Articles 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression. J Biol Chem. 2000 Dec 15;275(50):39279-86 Authors: Jucker BM, Ren J, Dufour S, Cao X, Previs SF, Cadman KS, Shulman GI To examine the relationship between mitochondrial energy coupling in skeletal muscle and change in...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Interactions of phospholipids with the mitochondrial cytochrome-c reductase studied b
Interactions of phospholipids with the mitochondrial cytochrome-c reductase studied by spin-label ESR and NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Interactions of phospholipids with the mitochondrial cytochrome-c reductase studied by spin-label ESR and NMR spectroscopy. Eur J Biochem. 1992 Oct 1;209(1):423-30 Authors: Hayer-Hartl M, Schägger H, von Jagow G, Beyer K Protein/phospholipid interactions in the...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Conformational analysis of a mitochondrial presequence derived from the F1-ATPase bet
Conformational analysis of a mitochondrial presequence derived from the F1-ATPase beta-subunit by CD and NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Conformational analysis of a mitochondrial presequence derived from the F1-ATPase beta-subunit by CD and NMR spectroscopy. Biochim Biophys Acta. 1992 Sep 4;1159(1):81-93 Authors: Bruch MD, Hoyt DW Previous studies on mitochondrial targeting presequences have indicated that formation of an amphiphillic...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] A 31P NMR study of mitochondrial inorganic phosphate visibility: effects of Ca2+, Mn2
A 31P NMR study of mitochondrial inorganic phosphate visibility: effects of Ca2+, Mn2+, and the pH gradient. Related Articles A 31P NMR study of mitochondrial inorganic phosphate visibility: effects of Ca2+, Mn2+, and the pH gradient. Biochemistry. 1992 Feb 11;31(5):1322-30 Authors: Hutson SM, Williams GD, Berkich DA, LaNoue KF, Briggs RW The effects of external pH, temperature, and Ca2+ and Mn2+ concentrations on the compartmentation and NMR visibility of inorganic phosphate (Pi) were studied in isolated rat liver mitochondria respiring on...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] 31P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenin
31P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenine nucleotide translocase. Related Articles 31P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenine nucleotide translocase. Biochemistry. 1991 Aug 27;30(34):8351-7 Authors: Masiakos PT, Williams GD, Berkich DA, Smith MB, LaNoue KF The exchange of intramitochondrial ATP (ATP(in)) for extramitochondrial ATP (ATP(out)) was measured by using 31P NMR spectroscopy over a range of temperatures in isolated rat liver mitochondria oxidizing...
nmrlearner Journal club 0 08-21-2010 11:12 PM
Assessment of GABARAP self-association by its diffusion properties
Abstract Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) belongs to a family of small ubiquitin-like adaptor proteins implicated in intracellular vesicle trafficking and autophagy. We have used diffusion-ordered nuclear magnetic resonance spectroscopy to study the temperature and concentration dependence of the diffusion properties of GABARAP. Our data suggest the presence of distinct conformational states and provide support for self-association of GABARAP molecules. Assuming a monomerâ??dimer equilibrium, a temperature-dependent dissociation constant could be derived....
nmrlearner Journal club 0 08-14-2010 04:19 AM
NMR RPF: new NMR quality assessment scores
Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. Huang YJ, Powers R, Montelione GT. Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, Northeast Structural Genomics Consortium, and Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5368, USA. J Am Chem Soc. 2005 Feb 16;127(6):1665-74. Abstract:
nmrlearner Journal club 0 03-22-2005 05:33 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:13 PM.


Map