BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-25-2017, 04:28 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,793
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Application of Paramagnetic Relaxation Enhancements to Accelerate the Acquisition of 2D and 3D Solid-State NMR Spectra of Oriented Membrane Proteins.

Application of Paramagnetic Relaxation Enhancements to Accelerate the Acquisition of 2D and 3D Solid-State NMR Spectra of Oriented Membrane Proteins.

Related Articles Application of Paramagnetic Relaxation Enhancements to Accelerate the Acquisition of 2D and 3D Solid-State NMR Spectra of Oriented Membrane Proteins.

Methods. 2017 Dec 21;:

Authors: Wang S, Gopinath T, Veglia G

Abstract
Oriented sample solid-state NMR (OS-ssNMR) spectroscopy is uniquely suited to determine membrane protein topology at the atomic resolution in liquid crystalline bilayers under physiological temperature. However, the inherent low sensitivity of this technique has hindered the throughput of multidimensional experiments necessary for resonance assignments and structure determination. In this work, we show that doping membrane protein bicelle preparations with paramagnetic ion chelated lipids and exploiting paramagnetic relaxation effects it is possible to accelerate the acquisition of both 2D and 3D multidimensional experiments with significant saving in time. We demonstrate the efficacy of this method for a small membrane protein, sarcolipin, reconstituted in DMPC/POPC/DHPC oriented bicelles. In particular, using Cu2+-DMPE-DTPA as a dopant, we observed a decrease of 1H T1 of sarcolipin by 2/3, allowing us to reduce the recycle delay up to 3 times. We anticipate that these new developments will enable the routine acquisition of multidimensional OS-ssNMR experiments.


PMID: 29274874 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Application of Paramagnetic Relaxation Enhancements to Accelerate the Acquisition of 2D and 3D Solid-State NMR Spectra of Oriented Membrane Proteins
Application of Paramagnetic Relaxation Enhancements to Accelerate the Acquisition of 2D and 3D Solid-State NMR Spectra of Oriented Membrane Proteins Publication date: Available online 22 December 2017 Source:Methods</br> Author(s): Songlin Wang, T. Gopinath, Gianluigi Veglia</br> Oriented sample solid-state NMR (OS-ssNMR) spectroscopy is uniquely suited to determine membrane protein topology at the atomic resolution in liquid crystalline bilayers under physiological temperature. However, the inherent low sensitivity of this technique has hindered the throughput...
nmrlearner Journal club 0 12-23-2017 06:08 PM
[NMR paper] Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy.
Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy. Related Articles Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy. J Phys Chem Lett. 2017 Nov 17;: Authors: Mukhopadhyay D, Nadaud PS, Shannon MD, Jaroniec CP Abstract We demonstrate rapid quantitative measurements of site-resolved paramagnetic relaxation enhancements (PREs), which are a...
nmrlearner Journal club 0 11-19-2017 05:41 AM
[NMR paper] Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. Related Articles Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. J Biomol NMR. 2015 Mar 7; Authors: Gopinath T, Mote KR, Veglia G Abstract We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane...
nmrlearner Journal club 0 03-10-2015 07:22 PM
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples Abstract We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two...
nmrlearner Journal club 0 03-08-2015 01:07 AM
[NMR paper] Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins. Related Articles Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins. Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:50-68 Authors: Gopinath T, Mote KR, Veglia G Abstract Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS)...
nmrlearner Journal club 0 10-29-2013 08:21 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins Publication date: Available online 12 August 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br> Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
nmrlearner Journal club 0 08-13-2013 04:09 AM
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR Abstract Magic-angle spinning solid-state NMR measurements of 15N longitudinal paramagnetic relaxation enhancements (PREs) in 13C,15N-labeled proteins modified with Cu2+-chelating tags can yield multiple long-range electron-nucleus distance restraints up to ~20 ? (Nadaud et al. in J Am Chem Soc 131:8108??8120, 2009). Using the EDTA-Cu2+ K28C mutant of B1 immunoglobulin...
nmrlearner Journal club 0 08-13-2011 02:47 AM
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR.
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. J Biomol NMR. 2011 Aug 9; Authors: Nadaud PS, Sengupta I, Helmus JJ, Jaroniec CP Magic-angle spinning solid-state NMR...
nmrlearner Journal club 0 08-10-2011 12:30 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:32 PM.


Map