BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:29 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered

Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies.

Related Articles Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies.

Biochemistry. 1994 Sep 13;33(36):10944-50

Authors: Swairjo MA, Roberts MF, Campos MB, Dedman JR, Seaton BA

Calcium-dependent binding to phospholipid membranes is closely associated with annexin functional properties. In these studies, 31P- and 1H-nuclear magnetic resonance (NMR) experiments have been performed to study the effects of binding of recombinant rat annexin V to sonicated small unilamellar vesicles (SUVs). High-resolution 31P-NMR spectra of SUVs containing mixtures of synthetic phosphatidic acid (PA) and phosphatidylcholine (PC) show resolvable resonances corresponding to the inner-leaflet PA, outer-leaflet PA, and PC phosphoryl groups. When annexin binding occurs, the outer-leaflet PA 31P resonance shifts while that of PC is unaffected, consistent with selective binding of the protein to the phosphoryl moiety of the PA component. Further, annexin V binding to membrane outer-leaflet phospholipids has a measurable effect on inner-leaflet phospholipids of intact vesicles. 1H-NMR T1 relaxation measurements of SUVs containing acyl-chain-perdeuterated PC show no effects on the PA hydrocarbon-chain segmental motions upon annexin binding. Circular dichroism measurements indicate that the protein does not undergo a significant conformational change upon binding to the vesicles. The observed NMR changes do not correspond to proton or calcium gradients, nor to lateral segregation of extended patches of homogeneous phospholipids. The combined evidence suggests that selective, peripheral annexin-membrane interactions influence the environment of the inner vesicular surface. The mechanism proposed is a protein-induced change in vesicle morphology that corresponds to reduced curvature.

PMID: 8086411 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy.
Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy. Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy. Chem Biol Drug Des. 2011 May;77(5):301-8 Authors: Riedinger C, Noble ME, Wright DJ, Mulks F, Hardcastle IR, Endicott JA, McDonnell JM The interaction between murine double minute (MDM2) and p53 is a major target in anticancer drug design. Several potent compound series, including the nutlins...
nmrlearner Journal club 0 08-05-2011 11:48 AM
4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy.
4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. 4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. Chemistry. 2011 May 3; Authors: Jia X, Maleckis A, Huber T, Otting G Pseudocontact shifts (PCS) from paramagnetic lanthanide ions present powerful long-range structure restraints for studies of proteins by nuclear magnetic resonance spectroscopy. To elicit PCSs, the lanthanide must be attached site-specifically to the target protein....
nmrlearner Journal club 0 05-06-2011 02:00 AM
Small molecules against Ebola: NMR reveals drug leads
Small molecules against Ebola: NMR reveals drug leads There is neither vaccine nor cure for the Ebola virus, which causes fatal haemorrhagic fever in humans. However, a new NMR spectroscopic study by US researchers scientists has led to the discovery of a family of small molecules that apparently bind to the outer protein coat of the virus and halt its entry into human cells, so offering the possibility of an antiviral medication against the disease. Source: Spectroscopynow.com
nmrlearner General 0 02-15-2011 09:12 AM
[NMR paper] NMR analyses of the interactions of human annexin I with ATP, Ca2+, and Mg2+.
NMR analyses of the interactions of human annexin I with ATP, Ca2+, and Mg2+. Related Articles NMR analyses of the interactions of human annexin I with ATP, Ca2+, and Mg2+. FEBS Lett. 1998 Apr 3;425(3):523-7 Authors: Han HY, Lee YH, Oh JY, Na DS, Lee BJ Human annexin I is a member of the annexin family of calcium-dependent phospholipid binding proteins. The structure of an N-terminally truncated human annexin I (delta-annexin I) and its interactions with Ca2+, Mg2+, and ATP were studied at the atomic level using nuclear magnetic resonance...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Folding properties of an annexin I domain: a 1H-15N NMR and CD study.
Folding properties of an annexin I domain: a 1H-15N NMR and CD study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Folding properties of an annexin I domain: a 1H-15N NMR and CD study. Biochemistry. 1996 Aug 13;35(32):10347-57 Authors: Cordier-Ochsenbein F, Guerois R, Baleux F, Huynh-Dinh T, Chaffotte A, Neumann JM, Sanson A The annexin fold consists of four 70-residue domains with markedly homologous sequences and nearly identical structures. Each domain contains five helices...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells.
Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells. Related Articles Co2+ as a shift reagent for 35Cl NMR of chloride with vesicles and cells. Biochemistry. 1992 Jul 14;31(27):6272-8 Authors: Shachar-Hill Y, Shulman RG Applications of high-resolution 35Cl NMR to the study of chloride in vivo and in vesicles have hitherto been limited by problems of NMR detectability and of resolving internal from external signals. We have characterized the effects of Co2+ on the 35Cl resonance of Cl- in solution and have shown that when...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Temperature-reversible eruptions of vesicles in model membranes studied by NMR.
Temperature-reversible eruptions of vesicles in model membranes studied by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Temperature-reversible eruptions of vesicles in model membranes studied by NMR. Biophys J. 1992 May;61(5):1413-26 Authors: Nezil FA, Bayerl S, Bloom M Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprote
RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495-9 Authors: Hoffman DW, Query CC, Golden BL, White...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:06 AM.


Map