BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-22-2013, 04:43 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins.

Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins.

Related Articles Anisotropy of Rotational Diffusion, Dipole-Dipole Cross-Correlated NMR Relaxation and Angles between Bond Vectors in Proteins.

Chemphyschem. 2001 Sep 17;2(8-9):539-43

Authors: Deschamps M, Bodenhausen G

Abstract
Cross correlations between the fluctuations of dipolar (13) C(?) -(1) H(?) interactions yield information about the relative orientation of successive (13) C(?) -(1) H(?) bond vectors in proteins, in turn providing a direct handle on their structure and dynamics in solution. However, overall anisotropic reorientation must be taken into account in the interpretation of cross-correlation rates. The protein shown, human ubiquitin, has amino acid residues in white where the cross-correlation rates deviate from those predicted for a rigid structure.


PMID: 23686993 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Angew Chem Int Ed Engl. 2013 Mar 20; Authors: Stanek J, Saxena S, Geist L, Konrat R, Ko?mi?ski W Abstract Ab ultra-high-resolution NMR experiment for the measurement of intraresidue (1) H(i)-(15) N(i)-(13) C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone...
nmrlearner Journal club 0 03-23-2013 06:36 PM
Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess [J. Magn. Reson. 142 (2000) 331–340]
Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Corrected Proof, Available online 3 September 2011</br> Hans Wolfgang, Spiess</br> The development of four-pulse DEER as described, which has been published in the Journal of Magnetic Resonance more than 10 years ago. The corresponding paper is an example where a slight advance, such as adding a refocusing pulse, which in retrospect looks so simple,...
nmrlearner Journal club 0 09-03-2011 07:32 PM
[NMR paper] Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in
Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. Related Articles Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003 Aug 27;125(34):10420-8 Authors: Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE A comparison of HSQC and HMQC pulse schemes for recording (1)H(13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented....
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Automated NMR determination of protein backbone dihedral angles from cross-correlated
Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. Related Articles Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. J Biomol NMR. 2002 Apr;22(4):349-63 Authors: Kloiber K, Schüler W, Konrat R The simultaneous interpretation of a suite of dipole-dipole and dipole-CSA cross-correlation rates involving the backbone nuclei 13Calpha, 1Halpha, 13CO, 15N and 1HN can be used to resolve the ambiguities associated with each individual...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] The structure and dipole moment of globular proteins in solution and crystalline stat
The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Related Articles The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Biopolymers. 2001 Apr 5;58(4):398-409 Authors: Takashima S The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemica
Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Direct measurement of angles between bond vectors in high-resolution NMR.
Direct measurement of angles between bond vectors in high-resolution NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-sci_full_freeReg.gif Related Articles Direct measurement of angles between bond vectors in high-resolution NMR. Science. 1997 May 23;276(5316):1230-3 Authors: Reif B, Hennig M, Griesinger C Angles between two interatomic vectors are measured for structure elucidation in solution nuclear magnetic resonance (NMR). The angles can be determined directly by using...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Direct measurement of angles between bond vectors in high-resolution NMR.
Direct measurement of angles between bond vectors in high-resolution NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-sci_full_freeReg.gif Related Articles Direct measurement of angles between bond vectors in high-resolution NMR. Science. 1997 May 23;276(5316):1230-3 Authors: Reif B, Hennig M, Griesinger C Angles between two interatomic vectors are measured for structure elucidation in solution nuclear magnetic resonance (NMR). The angles can be determined directly by using...
nmrlearner Journal club 0 08-22-2010 03:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:33 PM.


Map