BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Analysis of slow interdomain motion of macromolecules using NMR relaxation data.

Analysis of slow interdomain motion of macromolecules using NMR relaxation data.

Related Articles Analysis of slow interdomain motion of macromolecules using NMR relaxation data.

J Am Chem Soc. 2001 May 2;123(17):3953-9

Authors: Baber JL, Szabo A, Tjandra N

The interpretation of NMR relaxation data for macromolecules possessing slow interdomain motions is considered. It is shown how the "extended model-free approach" can be used to analyze (15)N backbone relaxation data acquired at three different field strengths for Xenopus Ca(2+)-ligated calmodulin. This protein is comprised of two domains connected by two rigid helices joined by a flexible segment. It is possible to uniquely determine all "extended model-free" parameters without any a priori assumptions regarding their magnitudes by simultaneously least-squares fitting the relaxation data measured at two different magnetic fields. It is found that the two connecting helices (and consequently the domains) undergo slow motions relative to the conformation in which the two helices are parallel. The time scales and amplitudes of these "wobbling" motions are characterized by effective correlation times and squared-order parameters of approximately 3 ns and 0.7, respectively. These values are consistent with independent estimates indicating that this procedure provides a useful first-order description of complex internal motions in macromolecules despite neglecting the coupling of overall and interdomain motions.

PMID: 11457145 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Whole-Body Rocking Motion of a Fusion Peptide in Lipid Bilayers from Size-Dispersed 15N NMR Relaxation.
Whole-Body Rocking Motion of a Fusion Peptide in Lipid Bilayers from Size-Dispersed 15N NMR Relaxation. Whole-Body Rocking Motion of a Fusion Peptide in Lipid Bilayers from Size-Dispersed 15N NMR Relaxation. J Am Chem Soc. 2011 Aug 17; Authors: Lorieau JL, Louis JM, Bax A Abstract Biological membranes present a highly fluid environment and integration of proteins within such membranes is itself highly dynamic: proteins diffuse laterally within the plane of the membrane, and rotationally about the normal vector of this plane. We...
nmrlearner Journal club 0 08-19-2011 02:56 PM
NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD.
NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD. NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD. Biochim Biophys Acta. 2011 Jul;1814(7):873-81 Authors: Kovermann M, Zierold R, Haupt C, Löw C, Balbach J The dynamics of the two domain prolyl-peptidyl cis/trans isomerase and chaperone SlyD was studied on a ps-to-ns time scale to correlate dynamic changes with the catalytic function. (15)N transversal and longitudinal relaxation rates as well as...
nmrlearner Journal club 0 08-13-2011 12:57 PM
relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins
relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins Abstract Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was...
nmrlearner Journal club 0 06-06-2011 12:53 AM
Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation.
Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Sci. 2011 Feb;20(2):229-46 Authors: Clore GM Sparsely populated states of macromolecules, characterized by short lifetimes and high free-energies relative to the predominant ground state, often play a key role in many biological, chemical, and biophysical processes. In this review, we briefly summarize various new developments in NMR...
nmrlearner Journal club 0 06-04-2011 11:26 AM
relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and ?s motion of proteins.
relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and ?s motion of proteins. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and ?s motion of proteins. J Biomol NMR. 2011 May 27; Authors: Bieri M, d'Auvergne EJ, Gooley PR Investigation of protein dynamics on the ps-ns and ?s-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying...
nmrlearner Journal club 0 05-28-2011 06:50 PM
[NMR paper] Potential bias in NMR relaxation data introduced by peak intensity analysis and curve
Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. Related Articles Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. J Biomol NMR. 2001 Sep;21(1):1-9 Authors: Viles JH, Duggan BM, Zaborowski E, Schwarzinger S, Huntley JJ, Kroon GJ, Dyson HJ, Wright PE We present an evaluation of the accuracy and precision of relaxation rates calculated using a variety of methods, applied to data sets obtained for several very different protein systems. We...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Selective NMR Experiments on Macromolecules: Implementation and Analysis of QUIET-NOE
Selective NMR Experiments on Macromolecules: Implementation and Analysis of QUIET-NOESY. Related Articles Selective NMR Experiments on Macromolecules: Implementation and Analysis of QUIET-NOESY. J Magn Reson. 1998 Jun;132(2):204-13 Authors: Esposito G, Viglino P, Fogolari F, Gaestel M, Carver JA The QUIET-NOESY experiment (Zwahlen et al., J. Am. Chem Soc. 116, 362-368, 1994) is applied to measure the mobility of the flexible extensions in the large aggregate (800 kDa) of a small heat-shock protein. The proper choices of the experimental...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Off-resonance rf fields in heteronuclear NMR: Application to the study of slow motion
Off-resonance rf fields in heteronuclear NMR: Application to the study of slow motions. Off-resonance rf fields in heteronuclear NMR: Application to the study of slow motions. J Biomol NMR. 1997 Dec;10(4):363-72 Authors: Zinn-Justin S, Berthault P, Guenneugues M, Desvaux H The advantages of using off-resonance rf fields in heteronuclear self-relaxation experiments are explored on a fully (15)N-enriched protein. It is firstly shown that in the absence of slow motions the longitudinal and transverse (15)N self-relaxation rate values derived with...
nmrlearner Journal club 0 09-24-2010 07:36 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:01 PM.


Map