BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-10-2013, 09:38 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.

Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.

Related Articles Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.

J Biomol NMR. 2013 Oct 9;

Authors: Haller JD, Schanda P

Abstract
Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps-?s motions in proteins by solid-state NMR.


PMID: 24105432 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems.
Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems. Related Articles Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems. Acc Chem Res. 2013 Jun 7; Authors: Asami S, Reif B Abstract When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers...
nmrlearner Journal club 0 06-12-2013 11:42 AM
Site-Resolved Measurementof Microsecond-to-MillisecondConformational-Exchange Processes in Proteins by Solid-State NMR Spectroscopy
Site-Resolved Measurementof Microsecond-to-MillisecondConformational-Exchange Processes in Proteins by Solid-State NMR Spectroscopy Martin Tollinger, Astrid C. Sivertsen, Beat H. Meier, Matthias Ernst and Paul Schanda http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja303591y/aop/images/medium/ja-2012-03591y_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja303591y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/ZVmFwVkbuRs
nmrlearner Journal club 0 08-29-2012 04:28 AM
[NMR paper] Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR
Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1rho relaxation experiments. Related Articles Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1rho relaxation experiments. Protein Sci. 2005 Mar;14(3):735-42 Authors: Massi F, Grey MJ, Palmer AG NMR spin relaxation experiments are used to characterize the dynamics of the backbone of ubiquitin. Chemical exchange processes affecting residues Ile 23, Asn 25, Thr 55, and Val 70 are characterized using on- and off-resonance...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Evaluation of parameters critical to observing proteins inside living Escherichia col
Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. Related Articles Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc. 2001 Sep 19;123(37):8895-901 Authors: Serber Z, Ledwidge R, Miller SM, Dötsch V Our recently developed in-cell NMR procedure now enables one to observe protein conformations inside living cells. Optimization of the technique demonstrates that distinguishing the signals produced by a...
nmrlearner Journal club 0 11-19-2010 08:44 PM
Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr-Purcell-Meiboom
Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr-Purcell-Meiboom-Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr Renee Otten, Janice Villali, Dorothee Kern and Frans A. A. Mulder http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107410x/aop/images/medium/ja-2010-07410x_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja107410x http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/aNQDkVtDj-4
nmrlearner Journal club 0 11-17-2010 06:08 PM
Probing Microsecond Time Scale Dynamics in Proteins by Methyl (1)H Carr-Purcell-Meibo
Probing Microsecond Time Scale Dynamics in Proteins by Methyl (1)H Carr-Purcell-Meiboom-Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrC(r). Probing Microsecond Time Scale Dynamics in Proteins by Methyl (1)H Carr-Purcell-Meiboom-Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrC(r). J Am Chem Soc. 2010 Nov 8; Authors: Otten R, Villali J, Kern D, Mulder FA To study microsecond processes by relaxation dispersion NMR spectroscopy, low power...
nmrlearner Journal club 0 11-10-2010 02:29 PM
[NMR paper] Internal motion time scales of a small, highly stable and disulfide-rich protein: a 1
Internal motion time scales of a small, highly stable and disulfide-rich protein: a 15N, 13C NMR and molecular dynamics study. Related Articles Internal motion time scales of a small, highly stable and disulfide-rich protein: a 15N, 13C NMR and molecular dynamics study. J Biomol NMR. 1999 May;14(1):47-66 Authors: Guenneugues M, Gilquin B, Wolff N, MĂ©nez A, Zinn-Justin S Motions of the backbone C alpha H alpha and threonine C beta H beta bonds of toxin alpha were investigated using natural abundance 13C NMR and molecular dynamics. Measurement...
nmrlearner Journal club 0 08-21-2010 04:03 PM
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Si
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. Related Articles Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates. J Am Chem Soc. 2010 Aug 6; Authors: Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B For the first time, we have demonstrated the site-resolved measurement of reliable (i.e., free of interfering effects) (15)N R(1rho) relaxation rates from a solid protein to extract dynamic...
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:55 PM.


Map