BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-03-2020, 11:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,169
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular Interactions of the Polysialytransferase Domain (PSTD) in ST8Sia IV with CMP-Sialic Acid and Polysialic Acid Required for Polysialylation of the Neural Cell Adhesion Molecule Proteins: An NMR Study.

Molecular Interactions of the Polysialytransferase Domain (PSTD) in ST8Sia IV with CMP-Sialic Acid and Polysialic Acid Required for Polysialylation of the Neural Cell Adhesion Molecule Proteins: An NMR Study.

Related Articles Molecular Interactions of the Polysialytransferase Domain (PSTD) in ST8Sia IV with CMP-Sialic Acid and Polysialic Acid Required for Polysialylation of the Neural Cell Adhesion Molecule Proteins: An NMR Study.

Int J Mol Sci. 2020 Feb 26;21(5):

Authors: Liao SM, Lu B, Liu XH, Lu ZL, Liang SJ, Chen D, Troy Ii FA, Huang RB, Zhou GP

Abstract
Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of ?2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


PMID: 32111064 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Catalytic Cycle of Neisseria meningitidis CMP-Sialic Acid Synthetase Illustrated by High-Resolution Protein Crystallography
Catalytic Cycle of Neisseria meningitidis CMP-Sialic Acid Synthetase Illustrated by High-Resolution Protein Crystallography https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.9b00517/20191003/images/medium/bi9b00517_0009.gif Biochemistry DOI: 10.1021/acs.biochem.9b00517 http://feeds.feedburner.com/~r/acs/bichaw/~4/heIigCTU_BA More...
nmrlearner Journal club 0 02-29-2020 09:52 PM
[NMR paper] NMR analysis on the sialic acid-binding mechanism of an R-type lectin mutant by natural evolution-mimicry.
NMR analysis on the sialic acid-binding mechanism of an R-type lectin mutant by natural evolution-mimicry. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles NMR analysis on the sialic acid-binding mechanism of an R-type lectin mutant by natural evolution-mimicry. FEBS Lett. 2016 Jun;590(12):1720-8 Authors: Hemmi H, Kuno A, Unno S, Hirabayashi J Abstract A sialic acid-binding lectin (SRC) was created from the C-terminal domain of...
nmrlearner Journal club 0 04-30-2017 05:31 PM
Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase
Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase Abstract Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as...
nmrlearner Journal club 0 01-09-2015 03:58 PM
[NMR paper] NMR evidence for oligosaccharide release from the dendritic-cell specific intercellular adhesion molecule*3-grabbing non-integrin-related (CLEC4M) carbohydrate recognition domain at low pH.
NMR evidence for oligosaccharide release from the dendritic-cell specific intercellular adhesion molecule*3-grabbing non-integrin-related (CLEC4M) carbohydrate recognition domain at low pH. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR evidence for oligosaccharide release from the dendritic-cell specific intercellular adhesion molecule*3-grabbing non-integrin-related (CLEC4M) carbohydrate recognition domain at low pH. FEBS J. 2014...
nmrlearner Journal club 0 10-15-2014 10:58 AM
[NMR paper] NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies.
NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies. Bioorg Med Chem. 2013 Oct 1;21(19):6069-76 Authors: Hanashima S, Sato C, Tanaka H, Takahashi T, Kitajima K, Yamaguchi Y Abstract Oligo/polysialic acids consisting...
nmrlearner Journal club 0 04-08-2014 08:02 PM
[NMR paper] NMR reveals molecular interactions and dynamics of fatty acid binding to albumin.
NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. Biochim Biophys Acta. 2013 Aug 9; Authors: Hamilton JA Abstract BACKGROUND: The molecular details of fatty acid (FA) interactions with albumin are fundamental to understanding transport in the plasma and cellular utilization of these key nutrients and building blocks of membranes.
nmrlearner Journal club 0 08-14-2013 05:24 PM
[NMR paper] Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures
Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Related Articles Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog Lipid Res. 2004 May;43(3):177-99 Authors: Hamilton JA The interactions of fatty acids with proteins have been studied by a variety of conventional approaches for decades. However, only limited aspects of fatty acid-protein interactions have been elucidated, even with the integration of information gleaned from the many techniques....
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for
Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. Related Articles Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR. 1995 Sep;6(2):129-34 Authors: Kigawa T, Muto Y, Yokoyama S For the application of multidimensional NMR spectroscopy to larger proteins, it would be useful to perform selective labeling of one of the 20 amino acids. For some amino acids, however, amino acid metabolism drastically reduces the efficiency and selectivity...
nmrlearner Journal club 0 08-22-2010 03:50 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:45 PM.


Map