BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Accurate measurements of (13)C-(13)C distances in uniformly (13)C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy. (http://www.bionmr.com/forum/journal-club-9/accurate-measurements-13-c-13-c-distances-uniformly-13-c-labeled-proteins-using-multi-dimensional-four-oscillating-field-solid-state-nmr-spectroscopy-21300/)

nmrlearner 09-23-2014 01:57 PM

Accurate measurements of (13)C-(13)C distances in uniformly (13)C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy.
 
Accurate measurements of (13)C-(13)C distances in uniformly (13)C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy.

Related Articles Accurate measurements of (13)C-(13)C distances in uniformly (13)C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy.

J Chem Phys. 2014 Sep 21;141(11):114201

Authors: Straasų LA, Nielsen JT, Bjerring M, Khaneja N, Nielsen NC

Abstract
Application of sets of (13)C-(13)C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important (13)C-(13)C distances in uniformly (13)C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ((13)C') and aliphatic ((13)Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasų, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly (13)C,(15)N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of (13)C'-(13)Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform (13)C,(15)N-labeling on the FGAIL fragment.


PMID: 25240350 [PubMed - in process]



More...


All times are GMT. The time now is 12:22 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013