BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-02-2011, 08:25 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Water proton spin saturation affects measured protein backboneN spin relaxation rates

Water proton spin saturation affects measured protein backboneN spin relaxation rates


Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 1 October 2011

Kang*Chen, Nico*Tjandra

Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measureN longitudinalT1and transversal rotating-frameT1?spin relaxation. Unexpectedly theNT1relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDaE.coli. glutamine binding protein (GlnBP) theT1values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the twoT1 ?data sets are correlated without an apparent offset. The averageT1difference was reduced to 12% when the experimental recycle delay was doubled, while the averageT1values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios (s/n) showed the apparent slowerN relaxation obtained with the water dephasing experiment originated from the differences inHNrecovery for each relaxation time point. This in turn offset signal reduction fromN relaxation decay. The artifact becomes noticeable when the measuredN relaxation time constant is comparable to recycle delay, e.g., theNT1of medium to large proteins. TheN relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters ( = 0.81) than the non-saturated ones ( = 0.88), indicating such order parameters may be previously underestimated.

Graphical abstract



Highlights

? Different water suppression methods were adopted to measure NMR relaxation. ? SlowerNT1rates were identified when the water was saturated in the experiment. ? The cause for the slowerT1relaxation is the non-uniformHNrecovery. ? SlowerT1relaxation leads to apparent lower Model-Free order parameters.



Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner Journal club 0 09-30-2011 08:01 PM
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 7 January 2011</br> S. Bastien, Morin</br> More...
nmrlearner Journal club 0 01-08-2011 12:25 PM
[NMR tweet] Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99
Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99 Published by booksvariety (BooksVariety.com) on 2010-12-04T23:02:54Z Source: Twitter
nmrlearner Twitter NMR 0 12-04-2010 11:36 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br> Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br> The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...
nmrlearner Journal club 0 11-11-2010 04:33 PM
[NMR paper] Rapid amide proton exchange rates in peptides and proteins measured by solvent quench
Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci. 1995 Apr;4(4):804-14 Authors: Zhang YZ,...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. J Magn Reson B. 1994 May;104(1):11-25 Authors: Kuwata K, Brooks D, Yang H, Schleich T The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. J Magn Reson B. 1994 May;104(1):11-25 Authors: Kuwata K, Brooks D, Yang H, Schleich T The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic bindi
19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin. Related Articles 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin. Biochemistry. 1992 Aug 11;31(31):7069-76 Authors: Dubois BW, Evers AS This paper characterizes the low-affinity ligand binding interactions of a fluorinated volatile anesthetic, isoflurane (CHF2OCHClCF3), with bovine serum albumin...
nmrlearner Journal club 0 08-21-2010 11:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:01 PM.


Map