BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-17-2013, 04:38 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 30-or nmr spectroscopy reveals unexpected structural variation at the protein-protein interface in mhc class i molecules

30-OR NMR SPECTROSCOPY REVEALS UNEXPECTED STRUCTURAL VARIATION AT THE PROTEIN-PROTEIN INTERFACE IN MHC CLASS I MOLECULES

Publication date: November 2013
Source:Human Immunology, Volume 74, Supplement

Author(s): Andreas Ziegler , Monika Beerbaum , Martin Ballaschk , Natalja Erdmann , Christina Schnick , Anne Diehl , Barbara Uchanska-Ziegler , Peter Schmieder

Aim ?2-microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of ?2m in various MHC complexes as shown by X-ray crystallography, ?2m is often considered as a mere scaffolding protein. We investigate here whether ?2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. Methods We employ High-Cell-Density Fermentation (HCDF) to obtain deuterated ?2m and Nuclear Magnetic Resonance (NMR) spectroscopy to examine the ?2m-HC interface. Results Following complexation of ?2m, the HLA-B*27:09 HC, and a peptide, the NMR resonance assignments are used to examine the ?2m-HC interface. We then compare the resonances of ?2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with three self-peptides (TIS, pVIPR, pGR) and a viral peptide (pLMP2) for which structural information is already available. The resonance of ?2m-Trp95 does not show any variation in chemical shift, thus serving as an ideal internal control. However, there are distinct resonance signals for ?2m-Trp60 in each of the complexes. Conclusions As these signals are not only distinguishable for a given HLA-B27 subtype, but are also in characteristic positions within the spectra for each of the four peptides employed here, this indicates the existence of an unexpected plasticity that enables ?2m to accommodate changes depending on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules.
NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. J Biomol NMR. 2013 Sep 5; Authors: Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P Abstract ?2-Microglobulin (?2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I...
nmrlearner Journal club 0 09-06-2013 06:52 PM
[NMR paper] Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy.
Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. Related Articles Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc. 2013 Feb 14; Authors: Anderson KM, Esadze A, Manoharan M, Bruschweiler R, Gorenstein DG, Iwahara J Abstract Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair...
nmrlearner Journal club 0 02-15-2013 05:21 PM
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems Abstract The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological...
nmrlearner Journal club 0 03-03-2011 02:06 AM
Small molecules against Ebola: NMR reveals drug leads
Small molecules against Ebola: NMR reveals drug leads There is neither vaccine nor cure for the Ebola virus, which causes fatal haemorrhagic fever in humans. However, a new NMR spectroscopic study by US researchers scientists has led to the discovery of a family of small molecules that apparently bind to the outer protein coat of the virus and halt its entry into human cells, so offering the possibility of an antiviral medication against the disease. Source: Spectroscopynow.com
nmrlearner General 0 02-15-2011 09:12 AM
[NMR paper] Protein structural class identification directly from NMR spectra using averaged chem
Protein structural class identification directly from NMR spectra using averaged chemical shifts. Related Articles Protein structural class identification directly from NMR spectra using averaged chemical shifts. Bioinformatics. 2003 Nov 1;19(16):2054-64 Authors: Mielke SP, Krishnan VV Knowledge of the three-dimensional structure of proteins is integral to understanding their functions, and a necessity in the era of proteomics. A wide range of computational methods is employed to estimate the secondary, tertiary, and quaternary structures of...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] NMR spectroscopy reveals the solution dimerization interface of p53 core domains boun
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. Related Articles NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem. 2001 Dec 28;276(52):49020-7 Authors: Klein C, Planker E, Diercks T, Kessler H, Künkele KP, Lang K, Hansen S, Schwaiger M The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50% of all human tumors. The...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Characterization of the binding interface between ubiquitin and class I human ubiquit
Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. Related Articles Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. J Mol Biol. 1999 Jul 2;290(1):213-28 Authors: Miura T, Klaus W, Gsell B, Miyamoto C, Senn H Ubiquitin-conjugating enzymes (Ubc) are involved in ubiquitination of proteins in the...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane Protein
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/2007/129/i21/abs/ja069028m.html Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored Electron-Carrier Protein, Cytochrome b<sub>5</sub> <aui auinm="Durr, U. H. N."> <aui auinm="Yamamoto, K."> <aui auinm="Im, S.-C."> <aui auinm="Waskell, L."> <aui auinm="Ramamoorthy, A."> <aug><aul></aul></aug></aui></aui></aui></aui></aui> <au>Ulrich H. N. Dürr,</au> <au>Kazutoshi Yamamoto,</au><au>Sang-Choul Im,</au><au>Lucy Waskell,and </au><au>Ayyalusamy Ramamoorthy*</au> *ramamoor@umich.edu <aff></aff> ...
sivanmr Solid-state high-res. NMR 2 05-30-2007 12:54 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:20 AM.


Map