BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 2H NMR studies of the effect of pulmonary surfactant SP-C on the 1,2-dipalmitoyl-sn-g

2H NMR studies of the effect of pulmonary surfactant SP-C on the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine headgroup: a model for transbilayer peptides in surfactant and biological membranes.

Related Articles 2H NMR studies of the effect of pulmonary surfactant SP-C on the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine headgroup: a model for transbilayer peptides in surfactant and biological membranes.

Biochemistry. 1993 Oct 26;32(42):11338-44

Authors: Morrow MR, Taneva S, Simatos GA, Allwood LA, Keough KM

Surfactant protein C (SP-C) was isolated from solvent extracts of porcine pulmonary surfactant by gel filtration chromatography. The surfactant protein was combined with dipalmitoylphosphatidylcholine deuterated at the alpha and beta positions of the choline headgroup (DPPC-d4) Deuterium nuclear magnetic resonance spectra were collected as a function of temperature for a series of protein concentrations. The splitting of the alpha-deuteron spectrum in the liquid-crystalline phase was insensitive to temperature but decreased with increasing protein concentration. The response of headgroup conformation to protein concentration was consistent with an interaction between the lipid headgroup dipole and the net positive surface charge associated with the protein. The observed effect per charge on the alpha splitting was less than that reported for singly-charged amphiphiles [Scherer, P. G., & Seelig, J. (1989) Biochemistry 28, 7720-7728] but was similar to that obtained using a multipled-charged amphiphilic polypeptide [Roux, M., Neumann, J.-M., Hodges, R. S., Devaux, P. F., & Bloom, M. (1989) Biochemistry 28, 2313-2321]. This comparison suggests that the charges on SP-C are located near the bilayer surface. The possibility that the headgroup response is sensitive to the degree of clustering of surface charge is discussed. The beta-deuteron splitting in the liquid-crystalline phase decreased with increasing temperature but was relatively insensitive to protein concentration, suggesting that the torsion angle about the C alpha-C beta bond might be sensitive to steric interactions between the lipid headgroup and the protein.

PMID: 8218198 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR structure of lung surfactant peptide SP-B(11-25).
NMR structure of lung surfactant peptide SP-B(11-25). Related Articles NMR structure of lung surfactant peptide SP-B(11-25). Biochemistry. 2002 Jul 30;41(30):9627-36 Authors: Kurutz JW, Lee KY Surfactant protein B (SP-B) is a 79-residue essential component of lung surfactant, the film of lipid and protein lining the alveoli, and is the subject of great interest for its role in lung surfactant replacement therapies. Here we report circular dichroism results and the solution NMR structure of SP-B(11-25) (CRALIKRIQAMIPKG) dissolved in CD(3)OH at...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] What NMR can tell us about where lung surfactant proteins live.
What NMR can tell us about where lung surfactant proteins live. Related Articles What NMR can tell us about where lung surfactant proteins live. Biochem Soc Trans. 1997 Aug;25(3):1103-7 Authors: Morrow MR, Taneva S, Dico AS, Hancock J, Keough KM 2H-NMR is beginning to provide some insights into the way in which the hydrophobic surfactant proteins SP-B and SP-C interact with phospholipid bilayers in multilamellar structures. Both proteins have a significant effect on slow bilayer motions. In many ways, the effect of SP-C on the surrounding...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apola
The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Related Articles The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015-23 Authors: Johansson J, Szyperski T, Curstedt T, Wüthrich K The nuclear magnetic resonance (NMR) structure of the pulmonary surfactant-associated lipoplypeptide C (SP-C) was determined in a mixed solvent of C2H3Cl/C2H3OH/ 1 M HCl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxi
Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. Related Articles Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. J Biomol NMR. 1994 May;4(3):411-32 Authors: Chandrasekhar K, Campbell AP, Jeng MF, Holmgren A, Dyson HJ As a prelude to complete structure calculations of both the oxidized and reduced forms of Escherichia coli thioredoxin (M(r) 11,700), we have analyzed the NMR...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apola
The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Related Articles The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015-23 Authors: Johansson J, Szyperski T, Curstedt T, Wüthrich K The nuclear magnetic resonance (NMR) structure of the pulmonary surfactant-associated lipoplypeptide C (SP-C) was determined in a mixed solvent of C2H3Cl/C2H3OH/ 1 M HCl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxi
Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. Related Articles Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. J Biomol NMR. 1994 May;4(3):411-32 Authors: Chandrasekhar K, Campbell AP, Jeng MF, Holmgren A, Dyson HJ As a prelude to complete structure calculations of both the oxidized and reduced forms of Escherichia coli thioredoxin (M(r) 11,700), we have analyzed the NMR...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Proton NMR studies of the structural and dynamical effect of chemical modification of
Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. Related Articles Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. J Mol Biol. 1994 Nov 4;243(4):719-35 Authors: Roumestand C, Gilquin B,...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] 1H and 31P NMR and HPLC studies of mouse L1210 leukemia cell extracts: the effect of
1H and 31P NMR and HPLC studies of mouse L1210 leukemia cell extracts: the effect of Au(I) and Cu(I) diphosphine complexes on the cell metabolism. Related Articles 1H and 31P NMR and HPLC studies of mouse L1210 leukemia cell extracts: the effect of Au(I) and Cu(I) diphosphine complexes on the cell metabolism. Magn Reson Med. 1991 Mar;18(1):142-58 Authors: Berners-Price SJ, Sant ME, Christopherson RI, Kuchel PW The effect of the antitumor complex Cl (where dppe is Ph2P(CH2)2PPh2) on the overall metabolism of cultured mouse L1210 leukemia cells...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:04 AM.


Map