BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1H NMR investigation of the electronic and molecular structure of the four-iron clust

1H NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a cluster ligand in each of the four redox states.

Related Articles 1H NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a cluster ligand in each of the four redox states.

Biochemistry. 1995 Sep 12;34(36):11373-84

Authors: Calzolai L, Gorst CM, Zhao ZH, Teng Q, Adams MW, La Mar GN

The molecular and electronic structure of the four-iron cluster of the ferredoxin (Fd) from the hyperthermophilic archaeon, Pyrococcus furiosus, Pf (which has only three Cys in the cluster binding consensus sequence), has been investigated by 1H NMR in order to determine the identity of the noncysteinyl cluster ligand in each of the four redox states [Gorst, C. M., Zhou, Z. H., Ma, K., Teng, Q., Howard, J. B., Adams, M. W., & La Mar, G. N. (1995) Biochemistry 34, 8788-8795], and to characterize the electron spin ground state for the reduced cluster which at 10 K exhibits an unusual predominant S = 3/2 ground state [Conover, R. C., Kowal, A. T., Fu, W., Park, J. -B., Aono, S., Adams, M. W. W., & Johnson, M. K. (1990) J. Biol. Chem. 265, 8533-8541]. It is demonstrated that a combination of 1D and 2D NMR tailored to relaxed resonances allows the location of four hyperfine shifted and paramagnetically relaxed spin systems which dictates that all four cluster ligands are amino acid side chains, rather than a solvent water/hydroxide at the unique non-Cys ligation site. Three of the ligands could be sequence-specifically assigned to the three Cys residues (positions 11, 17, and 56) in the consensus sequence for cluster binding, hence identifying the fourth ligand as Asp 14. It is concluded that the identification of Asp ligation to a 4Fe cluster is readily achieved in the reduced, but not in the oxidized cluster of Fd. Analysis of the relaxation properties and pattern of the hyperfine shifts in Pf Fd reveals very strong similarities to other Fds with S = 1/2 ground states, leading to the conclusion that the S = 3/2 ground state is not detected in solution at ambient temperatures, and this in independent of the redox state of the two remaining Cys residues in the protein (positions 21 and 48). However, the electron self-exchange rate for 4Fe Pf Fd is significantly slower than for other 4Fe Fd with complete Cys ligation. Changes in the pattern of hyperfine shifts between oxidized and reduced clusters for the four ligands in Pf Fd reveal that the most significant variation occurs for the Asp 14 orientation, suggesting that the altered Asp orientation may "gate" the electron transfer.

PMID: 7547865 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution 1H NMR of the molecular and electronic structure of the heme cavity and subs
Solution 1H NMR of the molecular and electronic structure of the heme cavity and substrate binding pocket of high-spin ferric horseradish peroxidase: effect of His42Ala mutation. Related Articles Solution 1H NMR of the molecular and electronic structure of the heme cavity and substrate binding pocket of high-spin ferric horseradish peroxidase: effect of His42Ala mutation. J Am Chem Soc. 2001 May 9;123(18):4243-54 Authors: Asokan A, de Ropp JS, Newmyer SL, Ortiz de Montellano PR, La Mar GN Solution 1H NMR has been used to assign a major portion...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Proton NMR investigation of the [4Fe--4S]1+ cluster environment of nitrogenase iron p
Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Related Articles Proton NMR investigation of the 1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Biochemistry. 1995 Dec 5;34(48):15646-53 Authors: Lanzilotta WN, Holz RC, Seefeldt LC This work presents the complete assignment of the isotropically shifted 1H NMR resonances of Azotobacter vinelandii...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Investigation of the solution structure of chymotrypsin inhibitor 2 using molecular d
Investigation of the solution structure of chymotrypsin inhibitor 2 using molecular dynamics: comparison to x-ray crystallographic and NMR data. Related Articles Investigation of the solution structure of chymotrypsin inhibitor 2 using molecular dynamics: comparison to x-ray crystallographic and NMR data. Protein Eng. 1995 Nov;8(11):1117-28 Authors: Li A, Daggett V The native solution structure and dynamics of chymotrypsin inhibitor 2 (CI2) have been studied using a long (5.3 ns) molecular dynamics (MD) simulation without any imposed...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic a
Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage. Related Articles Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage. Biochemistry. 1994 May 31;33(21):6631-41 Authors: Hernández G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN The substrate-bound form of the enzyme heme oxygenase (HO), which catalyzed the stereospecific alpha-meso bridge...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic a
Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage. Related Articles Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage. Biochemistry. 1994 May 31;33(21):6631-41 Authors: Hernández G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN The substrate-bound form of the enzyme heme oxygenase (HO), which catalyzed the stereospecific alpha-meso bridge...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] NMR study of the molecular and electronic structure of the heme cavity in Dolabella m
NMR study of the molecular and electronic structure of the heme cavity in Dolabella met-cyano myoglobin. Related Articles NMR study of the molecular and electronic structure of the heme cavity in Dolabella met-cyano myoglobin. Biochim Biophys Acta. 1993 Jun 4;1163(3):287-96 Authors: Yamamoto Y, Suzuki T The molecular and electronic structure of the active site of the cyanide-ligated ferric complex of the myoglobin from the mollusc Dolabella auricularia has been investigated using NMR. Analysis of nuclear Overhauser effects has revealed that...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] 1H-NMR investigation of oxidized and reduced high-potential iron-sulfur protein from
1H-NMR investigation of oxidized and reduced high-potential iron-sulfur protein from Rhodopseudomonas globiformis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR investigation of oxidized and reduced high-potential iron-sulfur protein from Rhodopseudomonas globiformis. Eur J Biochem. 1993 Feb 15;212(1):69-78 Authors: Bertini I, Capozzi F, Luchinat C, Piccioli M 1H one-dimensional and two-dimensional NMR spectra have been...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] 1H NMR study of the solution molecular and electronic structure of Escherichia coli f
1H NMR study of the solution molecular and electronic structure of Escherichia coli ferricytochrome b562: evidence for S = 1/2 in equilibrium S = 5/2 spin equilibrium for intact His/Met ligation. Related Articles 1H NMR study of the solution molecular and electronic structure of Escherichia coli ferricytochrome b562: evidence for S = 1/2 in equilibrium S = 5/2 spin equilibrium for intact His/Met ligation. Biochemistry. 1991 Feb 26;30(8):2156-65 Authors: Wu JZ, La Mar GN, Yu LP, Lee KB, Walker FA, Chiu ML, Sligar SG The solution 500-MHz 1H NMR...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:17 AM.


Map