BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,578
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 19F NMR spectroscopy of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate redu

19F NMR spectroscopy of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase: equilibrium folding and ligand binding studies.

Related Articles 19F NMR spectroscopy of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase: equilibrium folding and ligand binding studies.

Biochemistry. 1994 May 10;33(18):5502-9

Authors: Hoeltzli SD, Frieden C

Escherichia coli dihydrofolate reductase contains five tryptophan residues distributed throughout its structure. In order to examine the regions of the protein surrounding these tryptophan residues, we have incorporated 6-fluorotryptophan into the protein. To assign the five resonances observed in the 19F NMR spectrum, five site-directed mutants of the enzyme were made, each with one tryptophan replaced by a phenylalanine. The 19F NMR spectra of the apoprotein, two binary complexes (with NADPH or methotrexate), and one ternary complex (with NADPH and methotrexate) were obtained. The chemical shifts of two of the tryptophan resonances (at positions 22 and 74) are particularly sensitive to ligand binding, while the remaining three (at positions 30, 47, and 133) change, but by less. Since several of the tryptophans are distant from the binding site, these results suggest that 19F NMR can detect ligand-induced changes that are propagated throughout the structure. In the apoprotein, the resonances of the tryptophans at positions 22 and 30 are broadened. In the binary complex with NADPH, the resonances of tryptophans 30 and 74 are broadened while that of tryptophan 22 almost disappears. The line broadening of the tryptophan 22 resonance may reflect motion in that part of the protein, since it is near a region that is disordered in the crystal structure of the apoprotein and its NADP+ complex. In contrast, in the ternary complex this region has a defined structure, and all resonances are of equal intensity and line width. The 19F NMR spectra of the apoprotein and the three ligand complexes were also examined as a function of urea concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID: 8180172 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Overexpression and purification of isotopically labeled Escherichia coli MutH for NMR
Overexpression and purification of isotopically labeled Escherichia coli MutH for NMR studies. Related Articles Overexpression and purification of isotopically labeled Escherichia coli MutH for NMR studies. Protein Expr Purif. 2003 Jun;29(2):252-8 Authors: Dutta A, Rao BJ, Chary KV MutH is one of the enzymes involved in the methyl directed -GATC-based DNA repair system. We report a significantly optimized protocol to prepare isotopically (15N and/or 13C) labeled MutH in minimal medium with high yields for NMR studies. Under the various...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Preparation of uniformly labeled NMR samples in Escherichia coli under the tight cont
Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Related Articles Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Protein Expr Purif. 2003 Apr;28(2):246-51 Authors: Boomershine WP, Raj ML, Gopalan V, Foster MP We report the first use of the tightly regulated araBAD promoter for generating...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in th
Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study. Related Articles Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study. Biochemistry. 1998 Jan 6;37(1):387-98 Authors: Hoeltzli SD, Frieden C Escherichia coli dihydrofolate reductase contains five tryptophan residues that are spatially distributed throughout the protein and located in different secondary structural elements....
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolat
Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. Biochemistry. 1996 Dec 24;35(51):16843-51 Authors: Hoeltzli SD, Frieden C Escherichia coli dihydrofolate reductase (ecDHFR, EC1.5.1.3) contains 5 tryptophan residues that have...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Dynamics of tryptophan binding to Escherichia coli Trp repressor wild type and AV77 m
Dynamics of tryptophan binding to Escherichia coli Trp repressor wild type and AV77 mutant: an NMR study. Related Articles Dynamics of tryptophan binding to Escherichia coli Trp repressor wild type and AV77 mutant: an NMR study. Biochemistry. 1995 Oct 10;34(40):13183-9 Authors: Schmitt TH, Zheng Z, Jardetzky O Binding of L-tryptophan to Escherichia coli trp repressor wild type (WT) and AV77 mutant was studied by 1H NMR spectroscopy. Ligand binding to the proteins resulted in changes in line widths and chemical shifts of ligand resonances, but...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] 19F NMR spectroscopy of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate redu
19F NMR spectroscopy of tryptophan-labeled Escherichia coli dihydrofolate reductase: equilibrium folding and ligand binding studies. Related Articles 19F NMR spectroscopy of tryptophan-labeled Escherichia coli dihydrofolate reductase: equilibrium folding and ligand binding studies. Biochemistry. 1994 May 10;33(18):5502-9 Authors: Hoeltzli SD, Frieden C Escherichia coli dihydrofolate reductase contains five tryptophan residues distributed throughout its structure. In order to examine the regions of the protein surrounding these tryptophan...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] The interactions of Escherichia coli trp repressor with tryptophan and with an operat
The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. Eur J Biochem. 1994 Oct 15;225(2):601-8 Authors: Ramesh V, Frederick RO, Syed SE,...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with
13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid. FEBS Lett. 1992 Nov 9;312(2-3):147-51 Authors: Cheung HT, Birdsall B, Feeney J 13C NMR studies of 13C-labelled ligands bound to dihydrofolate reductase provide (DHFR) a powerful means of...
nmrlearner Journal club 0 08-21-2010 11:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:38 PM.


Map