BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-27-2010, 02:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein dynamics and allostery: an NMR view.

Protein dynamics and allostery: an NMR view.

Related Articles Protein dynamics and allostery: an NMR view.

Curr Opin Struct Biol. 2010 Nov 23;

Authors: Tzeng SR, Kalodimos CG

Allostery, the process by which distant sites within a protein system are energetically coupled, is an efficient and ubiquitous mechanism for activity regulation. A purely mechanical view of allostery invoking only structural changes has developed over the decades as the classical view of the phenomenon. However, a fast growing list of examples illustrate the intimate link between internal motions over a wide range of time scales and function in protein-ligand interactions. Proteins respond to perturbations by redistributing their motions and they use fluctuating conformational states for binding and conformational entropy as a carrier of allosteric energy to modulate association with ligands. In several cases allosteric interactions proceed with minimal or no structural changes. We discuss emerging paradigms for the central role of protein dynamics in allostery.

PMID: 21109422 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A solution NMR view of protein dynamics in the biological membrane.
A solution NMR view of protein dynamics in the biological membrane. A solution NMR view of protein dynamics in the biological membrane. Curr Opin Struct Biol. 2011 Jul 30; Authors: Chill JH, Naider F Structure determination of membrane-associated proteins (MPs) represents a frontier of structural biology that is characterized by unique challenges in sample preparation and data acquisition. No less important is our ability to study the dynamics of MPs, since MP flexibility and characteristic motions often make sizeable contributions to their...
nmrlearner Journal club 0 08-03-2011 12:00 PM
Carbohydrate-Protein Interactions: A 3D View by NMR.
Carbohydrate-Protein Interactions: A 3D View by NMR. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem. 2011 Apr 15; Authors: Roldós V, Cañada FJ, Jiménez-Barbero J This review focuses on the application of NMR methods for understanding, at the molecular and atomic levels, the diverse mechanisms by which sugar molecules are recognised by the binding sites of lectins, antibodies and enzymes. Given the intrinsic chemical natures of sugars and their flexibility, it is well established that NMR parameters should be complemented by...
nmrlearner Journal club 0 04-19-2011 11:01 PM
Mapping allostery through the covariance analysis of NMR chemical shifts [Biophysics and Computational Biology]
Mapping allostery through the covariance analysis of NMR chemical shifts Selvaratnam, R., Chowdhury, S., VanSchouwen, B., Melacini, G.... Date: 2011-04-12 Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical...
nmrlearner Journal club 0 04-13-2011 01:15 AM
Mapping allostery through the covariance analysis of NMR chemical shifts.
Mapping allostery through the covariance analysis of NMR chemical shifts. Mapping allostery through the covariance analysis of NMR chemical shifts. Proc Natl Acad Sci U S A. 2011 Mar 28; Authors: Selvaratnam R, Chowdhury S, Vanschouwen B, Melacini G Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the...
nmrlearner Journal club 0 03-31-2011 06:24 PM
[MWClarkson blog] Dynamic origins of PBX1 homeodomain allostery
Dynamic origins of PBX1 homeodomain allostery http://www.researchblogging.org/public/citation_icons/rb2_large_gray.pngIn the Monod-Wyman-Changeux model for cooperative binding, proteins exist in an equilibrium of low-affinity and high-affinity states in solution, absent any ligand. In this view, although it may appear that the binding of a ligand causes a conformational transition, it actually stabilizes one conformation from a pre-existing equilibrium. In the past several years, advanced NMR techniques have yielded increasing evidence that these structural equilibria exist for a number of...
nmrlearner News from NMR blogs 0 12-02-2010 08:41 AM
[NMR paper] Dynamic activation of protein function: a view emerging from NMR spectroscopy.
Dynamic activation of protein function: a view emerging from NMR spectroscopy. Related Articles Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol. 2001 Nov;8(11):926-31 Authors: Wand AJ Recent developments in solution NMR methods have allowed for an unprecedented view of protein dynamics. Current insights into the nature of protein dynamics and their potential influence on protein structure, stability and function are reviewed. Particular emphasis is placed on the potential of fast side chain motion...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR images] View this protein\x26#39;s PDB entry
<a href=http://obsrv.com/FeedItems/ShowFeedItemsPage.aspx?FeedItems=31908721 target="_blank" ><img src='http://www-nmr.cabm.rutgers.edu/photogallery/proteins/gif/mef.gif' width='320px' /></a><br/>www-nmr.cabm.rutgers.edu<br/>1/11/2010 8:47:38 AM GMT View this protein\x26#39;s PDB entry More...
nmrlearner NMR pictures 0 11-01-2010 09:06 AM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data -
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data - 7thSpace Interactive (press release) <img alt="" height="1" width="1" /> CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data 7thSpace Interactive (press release) These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill ... Read here
nmrlearner Online News 0 10-29-2010 09:32 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:52 PM.


Map