BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-26-2011, 11:25 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default ‘q-titration’ of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy

‘q-titration’ of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy


Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 25 October 2011

Woo Sung*Son, Sang Ho*Park, Henry J.*Nothnagel, George J.*Lu, Yan*Wang, ...

‘q-titration’ refers to the systematic comparison of signal intensities in solution NMR spectra of uniformlyN labeled membrane proteins solubilized in micelles and isotropic bicelles as a function of the molar ratios (q) of the long-chain lipids (typically DMPC) to short-chain lipids (typically DHPC). In general, as q increases, the protein resonances = broaden and correspondingly have reduced intensities due to the overall slowing of protein reorientation. Since the protein backbone signals do not broaden uniformly, the differences in line widths (and intensities) enable the narrower (more intense) signals associated with mobile residues to be differentiated from the broader (less intense) signals associated with “structured” residues. For membrane proteins with between one and seven trans-membrane helices in isotropic bicelles, we have been able to find a value of q between 0.1 and 1.0 where only signals from mobile residues are observed in the spectra. The signals from the structured residues are broadened so much that they cannot be observed under standard solution NMR conditions. This q value corresponds to the ratio of DMPC: DHPC where the signals from the structured residues are “titrated out” of the spectrum. This q value is unique for each protein in magnetically aligned bilayers (q > 2.5) no signals are observed in solution NMR spectra of membrane proteins because they are “immobilized” by their interactions with the phospholipid bilayers on the relevant NMR timescale (~10Hz). No signals are observed from proteins in liposomes (only long-chain lipids) either. We show that it is feasible to obtain complementary solution NMR and solid-state NMR spectra of the same membrane protein, where signals from the mobile residues are present in solution NMR spectra, and signals from the structured residues are present in the solid-state NMR spectra. With assigned backbone amide resonances, these data are sufficient to describe major features of the secondary structure and basic topology of the protein. Even in the absence of assignments, this information can be used to help establish optimal experimental conditions.

Graphical abstract



Highlights

? Membrane protein dynamics can be identified based on signal intensities. ? It is possible to find q values where signals from structured residues are absent. ? Signals from structured residues in smaller proteins disappear at higher q values.



Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers Abstract Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange has been shown to start a new era for backbone assignment, protein structure elucidation, characterization of protein dynamics, and access to protein parts undergoing motion. The large absence of protons at non-exchangeable...
nmrlearner Journal club 0 08-11-2011 02:24 AM
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers.
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. J Biomol NMR. 2011 Aug 7; Authors: Linser R Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange...
nmrlearner Journal club 0 08-09-2011 12:11 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. J Am Chem Soc. 2010 Dec 27; Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner Journal club 0 12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja107847d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner Journal club 0 12-28-2010 05:27 AM
[NMR paper] High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. Related Articles High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J Am Chem Soc. 2004 Dec 1;126(47):15340-1 Authors: De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ High-resolution solid-state NMR spectra can be obtained from uniformly (15)N-labeled membrane proteins in magnetically aligned bicelles. Fast uniaxial diffusion about the axis of the bilayer normal results in single-line spectra that contain the orientational...
nmrlearner Journal club 0 11-24-2010 10:03 PM
Triton X-100 as the “Short-Chain Lipid” Improves the Magnetic Alignment and Stability
Triton X-100 as the “Short-Chain Lipid” Improves the Magnetic Alignment and Stability of Membrane Proteins in Phosphatidylcholine Bilayers for Oriented-Sample Solid-State NMR Spectroscopy Sang Ho Park et al http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1055565/aop/images/medium/ja-2010-055565_0003.gifJournal of the American Chemical Society, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable). Source: Journal of the American Chemical Society
nmrlearner Journal club 0 08-25-2010 03:51 PM
[NMR paper] Solution structure of the B-chain of insulin as determined by 1H NMR spectroscopy. Co
Solution structure of the B-chain of insulin as determined by 1H NMR spectroscopy. Comparison with the crystal structure of the insulin hexamer and with the solution structure of the insulin monomer. Related Articles Solution structure of the B-chain of insulin as determined by 1H NMR spectroscopy. Comparison with the crystal structure of the insulin hexamer and with the solution structure of the insulin monomer. Int J Pept Protein Res. 1995 Nov;46(5):424-33 Authors: Hawkins B, Cross K, Craik D The solution structure of the isolated B-chain of...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Short chain phospholipids in membrane protein crystallization: a 31P-NMR study of col
Short chain phospholipids in membrane protein crystallization: a 31P-NMR study of colloidal properties of dihexanoyl phosphatidylcholine. Related Articles Short chain phospholipids in membrane protein crystallization: a 31P-NMR study of colloidal properties of dihexanoyl phosphatidylcholine. Chem Phys Lipids. 1990 Sep;55(3):351-4 Authors: Eisele JL, Neumann JM, Chachaty C The colloidal features of short chain phospholipids can be deduced from 31P-NMR analysis by comparison with available data on phospholipid aqueous dispersion. In this study...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:05 AM.


Map