BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-30-2022, 07:25 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default [ASAP] Chemical Conformation of the Essential Glutamate Site of the c-Ring within Thermophilic Bacillus FoF1-ATP Synthase Determined by Solid-State NMR Based on its Isolated c-Ring Structure

[ASAP] Chemical Conformation of the Essential Glutamate Site of the c-Ring within Thermophilic Bacillus FoF1-ATP Synthase Determined by Solid-State NMR Based on its Isolated c-Ring Structure

Yasuto Todokoro, Su-Jin Kang, Toshiharu Suzuki, Takahisa Ikegami, Masatsune Kainosho, Masasuke Yoshida, Toshimichi Fujiwara, and Hideo Akutsu



Journal of the American Chemical Society
DOI: 10.1021/jacs.2c03580



Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS 195Pt Solid-State NMR Spectroscopy
The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS 195Pt Solid-State NMR Spectroscopy Amrit Venkatesh, Alicia Lund, Lukas Rochlitz, Ribal Jabbour, Christopher P. Gordon, Georges Menzildjian, Jasmine Viger-Gravel, Pierrick Berruyer, David Gajan, Christophe Cope?ret, Anne Lesage, and Aaron J. Rossini https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.0c09101/20201022/images/medium/ja0c09101_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.0c09101...
nmrlearner Journal club 0 10-23-2020 07:32 AM
[ASAP] Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex
Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.9b01073/20200216/images/medium/bi9b01073_0004.gif Biochemistry DOI: 10.1021/acs.biochem.9b01073 http://feeds.feedburner.com/~r/acs/bichaw/~4/9uJdixEmET4 More...
nmrlearner Journal club 0 02-29-2020 09:52 PM
[NMR paper] Direct assignment of 13C solid-state NMR signals of TFoF1 ATP synthase subunit c-ring in lipid membranes and its implication for the ring structure.
Direct assignment of 13C solid-state NMR signals of TFoF1 ATP synthase subunit c-ring in lipid membranes and its implication for the ring structure. Direct assignment of 13C solid-state NMR signals of TFoF1 ATP synthase subunit c-ring in lipid membranes and its implication for the ring structure. J Biomol NMR. 2017 Dec 02;: Authors: Kang SJ, Todokoro Y, Bak S, Suzuki T, Yoshida M, Fujiwara T, Akutsu H Abstract FoF1-ATP synthase catalyzes ATP hydrolysis/synthesis coupled with a transmembrane H+ translocation in membranes. The Fo...
nmrlearner Journal club 0 12-05-2017 07:35 PM
Direct assignment of 13 C solid-state NMR signals of TF o F 1 ATP synthase subunit c -ring in lipid membranes and its implication for the ring structure
Direct assignment of 13 C solid-state NMR signals of TF o F 1 ATP synthase subunit c -ring in lipid membranes and its implication for the ring structure Abstract FoF1-ATP synthase catalyzes ATP hydrolysis/synthesis coupled with a transmembrane H+ translocation in membranes. The Fo c-subunit ring plays a major role in this reaction. We have developed an assignment strategy for solid-state 13C NMR (ssNMR) signals of the Fo c-subunit ring of thermophilic Bacillus PS3 (TFo ...
nmrlearner Journal club 0 12-03-2017 04:52 AM
[NMR paper] Active-site structure of the thermophilic foc-subunit ring in membranes elucidated by solid-state NMR.
Active-site structure of the thermophilic foc-subunit ring in membranes elucidated by solid-state NMR. Active-site structure of the thermophilic foc-subunit ring in membranes elucidated by solid-state NMR. Biophys J. 2014 Jan 21;106(2):390-8 Authors: Kang SJ, Todokoro Y, Yumen I, Shen B, Iwasaki I, Suzuki T, Miyagi A, Yoshida M, Fujiwara T, Akutsu H Abstract FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a...
nmrlearner Journal club 0 01-28-2014 11:53 AM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. J Biomol NMR. 2010 Sep;48(1):1-11 Authors: Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we...
nmrlearner Journal club 0 12-18-2010 12:00 PM
[NMR paper] Ring current effects in the active site of medium-chain Acyl-CoA dehydrogenase reveal
Ring current effects in the active site of medium-chain Acyl-CoA dehydrogenase revealed by NMR spectroscopy. Related Articles Ring current effects in the active site of medium-chain Acyl-CoA dehydrogenase revealed by NMR spectroscopy. J Am Chem Soc. 2005 Jun 15;127(23):8424-32 Authors: Wu J, Bell AF, Jaye AA, Tonge PJ Medium-chain acyl-CoA dehydrogenase (MCAD) catalyzes the flavin-dependent oxidation of fatty acyl-CoAs to the corresponding trans-2-enoyl-CoAs. The interaction of hexadienoyl-CoA (HD-CoA), a product analogue, with recombinant pig...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Aromatic ring-flipping in supercooled water: implications for NMR-based structural bi
Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. Related Articles Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. J Am Chem Soc. 2001 Jan 24;123(3):388-97 Authors: Skalicky JJ, Mills JL, Sharma S, Szyperski T We have characterized, for the first time, motional modes of a protein dissolved in supercooled water: the flipping kinetics of phenylalanyl and tyrosinyl rings of the 6 kDa protein BPTI have been investigated by NMR at...
nmrlearner Journal club 0 11-19-2010 08:32 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:47 AM.


Map