View Single Post
  #1  
Unread 11-18-2010, 09:15 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Microscopic stability of cold shock protein A examined by NMR native state hydrogen e

Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.

Related Articles Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.

Protein Sci. 2000 Feb;9(2):290-301

Authors: Jaravine VA, Rathgeb-Szabo K, Alexandrescu AT

Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.

PMID: 10716181 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No