View Single Post
  #1  
Unread 11-17-2010, 11:15 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared

15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins.

Related Articles 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins.

Biochemistry. 1998 Jul 14;37(28):9964-75

Authors: Baldellon C, Alattia JR, Strub MP, Pauls T, Berchtold MW, Cavé A, Padilla A

Dynamics of the rat alpha-parvalbumin calcium-loaded form have been determined by measurement of 15N nuclear relaxation using proton-detected heteronuclear NMR spectroscopy. The relaxation data were analyzed using spectral density functions and the Lipari-Szabo formalism. The major dynamic features for the rat alpha-parvalbumin calcium-loaded form are (1) the extreme rigidity of the helix-loop-helix EF-hand motifs and the linker segment connecting them, (2) the N and C termini of the protein being restricted in their mobility, (3) a conformational exchange occurring at the kink of helix D, and (4) the residue at relative position 2 in the Ca2+-binding sites having an enhanced mobility. Comparison of the Ca2+-binding EF-hand domains of alpha-parvalbumin-Ca2+, calbindin-Ca2+, and calmodulin-Ca2+ shows that parvalbumin is probably the most rigid of the EF-hand proteins. It also illustrates the dynamical properties which are conserved in the EF-hand domains from different members of this superfamily: (1) a tendency toward higher mobility of NH vectors at relative position 2 in the Ca2+-binding loop, (2) a restricted mobility for the other residues in the binding loop, and (3) an overall rigidity for the helices of EF-hand motifs. The differences in mobility between parvalbumin and the two EF-hand proteins occur mainly at the linker connecting the pair of EF hands and also at the C terminus of the last helix. In parvalbumin-Ca2+, these two regions are characterized by a pronounced rigidity compared to the corresponding more mobile regions in calbindin-Ca2+ and calmodulin-Ca2+.

PMID: 9665701 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No