View Single Post
  #1  
Unread 11-17-2010, 11:06 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po

Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains.

Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains.

Biochem Cell Biol. 1998;76(2-3):379-90

Authors: Slupsky CM, Gentile LN, McIntosh LP

The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic rings and the subsequent resolution and identification of their associated NOEs, however, can be a difficult task. Shown here is a strategy for assigning the 1H, 13C, and 15N signals from the aromatic side chains of histidine, tryptophan, tyrosine, and phenylalanine using a suite of homo- and hetero-nuclear scalar and NOE correlation experiments, as well as selective deuterium isotope labelling. In addition, a comparison of NOE information obtained from homonuclear NOE spectroscopy (NOESY) and 13C-edited NOESY-heteronuclear single quantum correlation experiments indicates that high-resolution homonuclear two-dimensional NOESY spectra of selectively deuterated proteins are invaluable for obtaining distance restraints to the aromatic residues.

PMID: 9923707 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No