View Single Post
  #1  
Unread 08-22-2010, 03:03 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Bacterial overexpression, isotope enrichment, and NMR analysis of the N-terminal doma

Bacterial overexpression, isotope enrichment, and NMR analysis of the N-terminal domain of human apolipoprotein E.

Related Articles Bacterial overexpression, isotope enrichment, and NMR analysis of the N-terminal domain of human apolipoprotein E.

Biochem Cell Biol. 1997;75(1):45-53

Authors: Fisher CA, Wang J, Francis GA, Sykes BD, Kay CM, Ryan RO

The nucleotide sequence encoding the N-terminal domain (residues 1-183) of human apolipoprotein E3 (apoE3) was cloned into the pET expression vector and introduced into Escherichia coli. Induction of protein expression with isopropyl beta-D-thiogalactopyranoside resulted in production of recombinant apoE3(1-183). Immunoblot analysis revealed that recombinant protein was present in both the cell pellet and cell culture supernatant. Analysis revealed that a significant portion of the rApoE3(1-183) in the cell pellet still possessed the bacterial N-terminal pel B leader sequence, encoded by plasmid DNA directly upstream of the apoE3(1-183) coding sequence. By contrast, this hydrophobic leader sequence had been removed from recombinant protein specifically accumulating in the culture medium. This behavior is novel for bacterial expression of apolipoprotein E and its truncated variants and permits efficient overexpression of the recombinant protein (> 100 mg/L cell culture). Recombinant apoE3(1-183) was isolated by a combination of heparin-Sepharose chromatography and reverse-phase HPLC. Electrospray mass spectrometry provided a mass of 21 191 daltons, corresponding directly to that expected from the known sequence. Circular dichroism spectroscopy revealed that the recombinant protein possesses significant amounts of alpha-helical secondary structure. The lipid binding ability of rApoE3(1-183) was evaluated using an in vitro lipoprotein binding assay. It was observed that recombinant apoE3(1-183) protected human low density lipoprotein (LDL) from lipid accumulation induced particle aggregation, indicating that it is capable of associating with lipoprotein surfaces. In addition, rApoE3(1-183) forms disk complexes with the model phospholipid dimyristoylphosphatidylcholine. In competition experiments, it was observed that rApoE3(1-183) phospholipid disks compete with 125I-LDL for binding to the apoB/E receptor on human skin fibroblasts to an extent similar to that observed for intact rApoE3. Taken together, these data show that recombinant apoE3(1-183) is fully functional as an apolipoprotein and receptor ligand. Given the high expression level and its known existence as a monomer in solution, we evaluated the potential for application of NMR spectroscopy to study the structure-function relationship of rApoE3(1-183). Bacteria were cultured in media supplemented with 15NH4Cl or [15N]glycine and the isotopically labeled recombinant apoE3(1-183) was analyzed by heteronuclear single quantum correlation NMR spectroscopy. The data revealed that rApoE3(1-183) is an excellent candidate for solution structure studies by NMR, including conformational adaptations associated with lipid association.

PMID: 9192073 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No