View Single Post
  #1  
Unread 08-22-2010, 02:27 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default An NMR study on the beta-hairpin region of barnase.

An NMR study on the beta-hairpin region of barnase.

Related Articles An NMR study on the beta-hairpin region of barnase.

Fold Des. 1996;1(3):231-41

Authors: Neira JL, Fersht AR

BACKGROUND: The beta-hairpin of barnase (residues Ser92-Leu95) has been proposed in theoretical and protein engineering studies to be an initiation site for folding [1]. There is evidence for residual structure in this region from NMR studies of the denatured protein under different denaturing conditions [2,3]. A more detailed analysis is possible by NMR studies of isolated fragments. RESULTS: Protons of fragments B(80-110) and B(69-110) in 6 M urea have non-random chemical shifts. Non-native long-range and medium-range NOE contacts with the aromatic moiety of Trp94 indicate that it is involved in a beta-turn-like or alpha-helix-like conformation. Also, the sidechains of Trp71, Tyr79, Phe82, Tyr90, Tyr97, His102, Tyr103 and Phe106 show non-native hydrophobic contacts. Non-random conformational shifts and sequential NN(i,i+1) NOE contacts are clustered to one of the beta-strands and one of the loop regions. CONCLUSIONS: The hairpin region of barnase adopts beta-turn-like or alpha-helix-like conformations, which are weakly populated even in 6 M urea. The hairpin region is a potential nucleation site in folding that may consolidate on docking with the first alpha-helix. The other residues that have conformational preferences from a beta-strand and one of the loop regions in the native intact protein, but they do not constitute a nucleation site.

PMID: 9079384 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No