View Single Post
  #1  
Unread 08-22-2010, 02:27 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default High helicity of peptide fragments corresponding to beta-strand regions of beta-lacto

High helicity of peptide fragments corresponding to beta-strand regions of beta-lactoglobulin observed by 2D-NMR spectroscopy.

Related Articles High helicity of peptide fragments corresponding to beta-strand regions of beta-lactoglobulin observed by 2D-NMR spectroscopy.

Fold Des. 1996;1(4):255-63

Authors: Kuroda Y, Hamada D, Tanaka T, Goto Y

BACKGROUND: Whereas protein fragments, when they are structured, adopt conformations similar to that found in the native state, the high helical propensity of beta-lactoglobulin, a predominantly beta-sheet protein, suggested that the fragments of beta-lactoglobulin can assume the non-native helical conformation. In order to assess this possibility, we synthesized four 17-18-residue peptides corresponding to three beta-strand regions and one helical region (as a control) of beta-lactoglobulin and examined their conformation. RESULTS: We observed residual helicities of up to 17% in water, by far-UV CD, for all four peptide fragments. The helices could be significantly stabilized by the addition of TFE, and the NMR analyses in a mixture of 50% water/TFE indicated that helical structures are formed in the central region whereas both termini are frayed. Thus, the very same residues that form strands in the native beta-lactoglobulin showed high helical preferences. CONCLUSIONS: These results stand out from the current general view that peptide fragments isolated from proteins either are unfolded or adopt native-like secondary structures. The implications of the results in the mechanism of protein folding and in designing proteins and peptides are significant.

PMID: 9079388 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No