View Single Post
  #1  
Unread 08-22-2010, 02:27 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default C-NMR study on the interaction of medium-chain acyl-CoA dehydrogenase with acetoacety

C-NMR study on the interaction of medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA.

Related Articles C-NMR study on the interaction of medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA.

J Biochem. 1996 Mar;119(3):512-9

Authors: Miura R, Nishina Y, Fuji S, Shiga K

The change-transfer interaction in the complex of pig kidney medium-chain acyl-CoA dehydrogenase (MCAD) with acetoacetyl-CoA was investigated by 13C-NMR spectroscopy and molecular orbital treatment. The acyl carbons of acetoacetyl-CoA were separately 13C-labeled and 13C-NMR spectra of the complexes of MCAD with the 13C-labeled acetoacetyl-CoA were measured. Each 13C-carbon atom was observed as a distinct peak and easily distinguished from the protein background. The chemical shift values for free acetoacetyl-CoA were 198.5, 59.9, 208.8, and 32.8 ppm for C(1), C(2), C(3), and C(4), respectively, which shifted to 181.3, 103.4, 192.3, and 29.9 ppm, respectively, when acetoacetyl-CoA was complexed with MCAD. While C(4) underwent a small upfield shift, the other carbons complexed with MCAD. While C(4) underwent a small upfield shift, the other carbons experienced significant shifts; both the C(1) and C(3) carbonyl carbons shifted upfield by about 17 ppm, and the C(2) carbon was observed as a very broad peak at a position shifted downfield by more than 40 ppm. These results were compared with 13C-NMR spectra of the keto-, enol-, and enolate forms of ethyl acetoacetate labeled with 13C at the acyl carbons, and interpreted with reference to the charge-transfer model based on the optimum overlap between the lowest unoccupied molecular orbital (LUMO) of flavin and the highest occupied molecular orbital (HOMO) of the enolate state of the acetoacetyl moiety of acetoacetyl-CoA. The C(2) carbon of acetoacetyl-CoA takes on the sp2 configuration in the bound form, indicating that one of the protons at C(2) of acetoacetyl-CoA is abstracted when bound to MCAD. C(1) = O is substantially polarized in the bound form of acetoacetyl-CoA, implying the presence of a machinery that polarizes this carbonyl group at the binding site, which thereby lowers the pKa value of the alpha-proton at C(2). This machinery is of fundamental importance in the initial step of MCAD catalysis.

PMID: 8830047 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No