View Single Post
  #1  
Unread 08-22-2010, 03:41 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells

1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells.

Related Articles 1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells.

Biophys J. 1995 Feb;68(2):681-93

Authors: Fetler BK, Simplaceanu V, Ho C

Using improved selective excitation methods for protein nuclear magnetic resonance (NMR), we have conducted measurements of the oxygenation of hemoglobin inside intact human red blood cells. The selective excitation methods use pulse shape-insensitive suppression of the water signal, while producing uniform phase excitation in the region of interest and, thus, are suitable for a wide variety of applications in vivo. We have measured the areas of 1H-NMR resonances of the hyperfine-shifted, exchangeable N delta H protons of the proximal histidine residues of the alpha- and beta-chains in deoxyhemoglobin (63 and 76 ppm downfield from the proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), respectively), which are sensitive to the paramagnetic state of the iron, and for which the alpha- and beta-chain resonances are resolved, and from the ring current-shifted gamma 2-CH3 protons of the distal valine residues in oxyhemoglobin (2.4 ppm upfield from DSS), which are sensitive to the conformation of the heme pocket in the oxy state. We have found that the proximal histidine resonances are directly correlated with the degree of oxygenation of hemoglobin, whereas the distal valine resonances appear to be correlated with the conformation in the heme pocket that occurs after the binding of oxygen, in both the presence and absence of 2,3-diphosphoglycerate. In addition, from the proximal histidine resonances, we have observed a preference for the binding of oxygen to the alpha-chain (up to about 10%) of hemoglobin over the beta-chain in both the presence and absence of 2,3-diphosphoglycerate. These new results obtained in intact erythrocytes are consistent with our previous 1H-NMR studies on purified human normal adult hemoglobin. A unique feature of our 1H-NMR method is the ability to monitor the binding of oxygen specifically to the alpha- and beta-chains of hemoglobin both in solution and in intact red blood cells. This information is essential to our understanding of the molecular basis for the hemoglobin molecule serving as the oxygen carrier in vertebrates.

PMID: 7696519 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No