View Single Post
  #1  
Unread 08-22-2010, 03:41 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,169
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Protein structure refinement based on paramagnetic NMR shifts: applications to wild-t

Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.

Related Articles Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.

Protein Sci. 1995 Feb;4(2):296-305

Authors: Gochin M, Roder H

A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and to define the structural changes induced by a Leu 94 to Val mutation. A single round of constrained minimization, using the crystal structure as the starting point, converged to a low-energy structure with an RMS deviation between calculated and observed pseudo-contact shifts of 0.045 ppm, 7.5-fold lower than the starting structure. At the same time, the procedure provided stereospecific assignments for more than 45 pairs of methylene protons and methyl groups. Structural changes caused by the mutation were determined to a precision of better than 0.3 A. Structure determination based on dipolar paramagnetic (pseudocontact) shifts is applicable to molecules containing anisotropic paramagnetic centers with short electronic relaxation times, including numerous naturally occurring metalloproteins, as well as proteins or nucleic acids to which a paramagnetic metal ion or ligand may be attached. The long range of paramagnetic shift effects (up to 20 A from the iron in the case of cytochrome c) provides global structural constraints, which, in conjunction with conventional NMR distance and dihedral angle constraints, will enhance the precision of NMR solution structure determination.

PMID: 7757018 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No