View Single Post
  #1  
Unread 08-22-2010, 03:33 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand bi

15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.

Related Articles 15N NMR relaxation studies of the FK506 binding protein: dynamic effects of ligand binding and implications for calcineurin recognition.

Biochemistry. 1994 Apr 12;33(14):4093-100

Authors: Cheng JW, Lepre CA, Moore JM

Backbone dynamics of the ligand- (FK506-) bound protein FKBP-12 (107 amino acids) have been examined using 15N relaxation data derived from inverse-detected two-dimensional 1H-15N NMR spectra. A model free formalism [Lipari & Szabo (1982) J. Am. Chem. Soc. 104, 4546-4559] was used to derive the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and the chemical-exchange line width (R(ex)) based on the measured 15N relaxation rate constants (R1, R2) and 1H-15N heteronuclear NOEs. The final optimized overall correlation time (tau m) was 9.0 ns. The average order parameter (S2) describing the amplitude of motions on the picosecond time scale was found to be 0.88 +/- 0.04, indicating that internal flexibility is restricted along the entire polypeptide chain. In contrast to results obtained for uncomplexed FKBP, the 80's loop (residues 82-87) surrounding the ligand binding site was found to be rigidly fixed, indicating that internal motions at this site are damped significantly due to stabilizing noncovalent interactions with the FK506 molecule. Structural implications of these differences in picosecond mobility as well as possible implications for calcineurin recognition are discussed.

PMID: 7512379 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No