View Single Post
  #1  
Unread 08-22-2010, 03:29 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 1H and 15N resonance assignment and secondary structure of capsicein, an alpha-elicit

1H and 15N resonance assignment and secondary structure of capsicein, an alpha-elicitin, determined by three-dimensional heteronuclear NMR.

Related Articles 1H and 15N resonance assignment and secondary structure of capsicein, an alpha-elicitin, determined by three-dimensional heteronuclear NMR.

Biochemistry. 1994 Jul 12;33(27):8188-97

Authors: Bouaziz S, van Heijenoort C, Huet JC, Pernollet JC, Guittet E

The backbone 1H and 15N resonance assignments and solution secondary structure determination of capsicein, a protein of 98 residues with a molecular mass of 10161 Da, are presented. Capsicein belongs to the elicitin family, elicitor molecules having toxic and signaling properties that are secreted by Phytophthora fungi, responsible for the incompatible hypersensitive reaction of diverse plant species leading to resistance against fungal or bacterial plant pathogens. The protein was uniformly labeled with 15N to overcome spectral overlap of the proton resonances. A combination of 3D HOHAHA-HMQC and 3D NOESY-HMOC experiments allowed the identification of spin systems with through-bond correlations, which were in turn correlated by through-space connections. The sequential assignment was obtained for main- and side-chain resonances and led to the identification of all secondary structures. A 3D HMQC-NOESY-HMQC experiment was performed which characterized the NH(i)-NH(i+1) connections specific to alpha-helical structures. This proved particularly useful for the assignment of degenerate amide protons of successive residues in alpha-helical structures. The data show five alpha-helical regions comprising residues 5-18, 26-33, 44-58, 59-67, and 86-98 and a two-stranded antiparallel beta-sheet involving residues 70-75 and 80-85, packed around a hydrophobic core grouping all of the aromatic residues. The C-terminal secondary structure motifs of capsicein evoke phospholipase structural features, which suggests that elicitins might interact with the lipidic molecules of the plasma membrane.

PMID: 8031752 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No