View Single Post
  #1  
Unread 08-22-2010, 03:01 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin

Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study.

Related Articles Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study.

Biochim Biophys Acta. 1993 Jul 4;1149(2):319-28

Authors: Monette M, Van Calsteren MR, Lafleur M

In order to get insights into the effects of cholesterol on protein activity, the lytic power of melittin on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol mixtures was studied using solid-state deuterium and phosphorus-31 nuclear magnetic resonance spectroscopy (2H and 31P-NMR). After incubation, melittin disrupts pure DPPC vesicles, leading to the formation of small lipid/peptide complexes below the phase transition temperature (Tm), whereas large bilayer assemblies are reformed above Tm; the transition between these two species is thermally reversible. This study reveals that cholesterol modifies this thermal behavior and that this modulation of the lytic power of melittin is indirect, since it is essentially related to the original effect of the sterol on the thermotropism of pure lipid bilayers. It is known that melittin does not lyse gel phase DPPC bilayers spontaneously. Our study shows that the addition of large amounts of sterol (30 mol%) does not promote the spontaneous lysis at 26 degrees C, despite the increased fluidity of the lipid system. The lysis takes place around 32 degrees C, regardless of the cholesterol concentration. This study also shows that high concentrations of cholesterol (> or = 30%) in DPPC bilayer inhibit the lysis. It is proposed that the tight lipid packing due to high cholesterol concentrations prevents the penetration of melittin into the bilayer. When melittin interacts with cholesterol-rich bilayers (30 mol%), the lysis is only partial, and leads to the formation of small cholesterol-depleted particles. Finally, DPPC which bears deuteriated acyl chains was used to determine the influence of melittin on the orientational order of the lipid chains in the large assemblies. The quadrupolar splittings obtained in the presence of melittin are not considerably different than those obtained in the absence of melittin.

PMID: 8323950 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No