View Single Post
  #1  
Unread 08-21-2010, 11:41 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat prote

Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat protein: a model for the coat protein dimer.

Related Articles Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat protein: a model for the coat protein dimer.

Biochemistry. 1992 Jun 16;31(23):5284-97

Authors: Henry GD, Sykes BD

The major coat protein of the filamentous coliphage M13 is a 50-residue integral membrane protein. Detergent-solubilized M13 coat protein is a promising candidate for structure determination by nuclear magnetic resonance methods as the protein can be prepared in large quantities and the protein-containing micelle is reasonably small. Under the conditions of our experiments, SDS-bound coat protein exists as a dimer with an apparent molecular weight of 27,000. Broad lines and poor resolution in the 1H spectrum have led us to adopt an 15N-directed approach, in which the coat protein was labeled both uniformly with 15N and selectively with [alpha-15N]alanine, -glycine, -valine, -leucine, -isoleucine, phenylalanine, -lysine, -tyrosine, and -methionine. Nitrogen resonances were assigned as far as possible using carboxypeptidase digestion, double-labeling, and an independent knowledge of the amide proton exchange rates determined from neighboring assigned 13C-labeled carbonyl carbons. 1H/15N heteronuclear multiple quantum coherence (HMQC) spectroscopy of both uniform and site-selectively-labeled proteins subsequently correlated amide nitrogen with amide proton chemical shifts, and the assignments were completed sequentially from homonuclear NOESY and HMQC-NOESY spectra. The most slowly exchanging amide protons were shown to occur in a continuous stretch extending from methionine-28 to phenylalanine-42. This sequence includes most of the resonances of the hydrophobic core, although it is shifted toward the C-terminal end of the protein. Strong NH to NH (i,i+1) nuclear Overhauser enhancements are a feature of the coat protein, which appears to be largely helical. Between 20 and 25 residues give rise to 2 juxtaposed resonances which can be seen clearly in the HMQC spectrum of uniform 15N-labeled coat protein. These residues are concentrated in a region extending from the beginning of the membrane-spanning sequence through to the disordered region near the C-terminus. We propose that dodecyl sulfate-bound M13 coat protein consists of two independent domains, an N-terminal helix which is in a state of moderately fast dynamic flux and a long, stable, C-terminal membrane-spanning helix, which undergoes extensive interactions with a second monomer. Amide 1H chemical shifts are consistent with this picture; in addition, a marked periodicity is observed at the C-terminal end of the molecule.

PMID: 1606152 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No