View Single Post
  #1  
Unread 08-21-2010, 11:16 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide d

113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast.

Related Articles 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast.

Eur J Biochem. 1991 Jun 15;198(3):607-11

Authors: Kofod P, Bauer R, Danielsen E, Larsen E, Bjerrum MJ

113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper, zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits in the dimeric enzyme were found to have identical coordination properties towards 113Cd(II) at the Zn site when no copper is coordinated at the Cu site, and when Cu(I) or Cd(II) is coordinated, were found to be very small indicating that 113Cd(II) must be bound to the same number and type of ligands in both cases. Furthermore, the spectra show that the rate of exchange of protein-bound 113Cd(II) and free 113Cd2+ is slow on the NMR time scale also at the Cu site. The present study suggests an explanation for the discrepancy in the literature regarding 113Cd-NMR investigations of bovine superoxide dismutase.

PMID: 2050141 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No