View Single Post
  #1  
Unread 08-21-2010, 11:12 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicyl

NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida.

Related Articles NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida.

Eur J Biochem. 1991 Sep 15;200(3):731-8

Authors: Vervoort J, Van Berkel WJ, Müller F, Moonen CT

p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.

PMID: 1915345 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No