View Single Post
  #1  
Unread 08-21-2010, 11:04 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Diffusional limitations of immobilized Escherichia coli in hollow-fiber reactors: inf

Diffusional limitations of immobilized Escherichia coli in hollow-fiber reactors: influence on 31P NMR spectroscopy.

Related Articles Diffusional limitations of immobilized Escherichia coli in hollow-fiber reactors: influence on 31P NMR spectroscopy.

Biotechnol Bioeng. 1990 Nov;36(9):887-901

Authors: Briasco CA, Karel SF, Robertson CR

Escherichia coli cells were immobilized and grown in hollow-fiber reactors allowing simultaneous NMR spectroscopy and perfusion with nutrient medium. The extent to which the cells were starved due to inadequate mass transfer was predicted using a mathematical model of reaction and diffusion. Reactors were experimentally characterized using (35)S autoradiography to visualize spatial variations in protein synthesis rates and transmission electron microscopy to indicate spatial variations in cell morphology. Mass transfer limitations in reactors operated at 37 degrees C were shown to be severe, with regions of starved cells occupying up to 80% of the cell-containing region. Phosphorus-31 nuclear magnetic resonance (NMR) spectra of the immobilized, perfused cells revealed abnormally low volume-averaged concentrations of sugar phosphates, NTP, and ratios of NTP/NDP in these reactors. Intracellular pH was also depressed in the cells. In order to overcome mass transfer limitations in the cell layer, the reactor growth temperature was decreased. Sulfur-35 autoradiographs of a reactor operated at 16 degrees C did not indicate the presence of starved cells. The NMR spectra obtained from this reactor showed near-normal intracellular pH, metabolite concentrations, and NTP/NDP ratios. The presence of significant mass transfer limitations in a perfused cell sample during NMR spectroscopy is generally undesirable since the resulting spectra can be ambiguous and difficult to interpret. The strategy adopted in this work, namely estimation of the relative rates of reaction and diffusion in the cell mass and appropriate changes in reactor design and operating parameters, should prove generally applicable for the design of perfused cell samples for NMR spectroscopic experiments.

PMID: 18597289 [PubMed]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No