View Single Post
  #1  
Unread 08-21-2010, 10:48 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Hypophosphite transport in human erythrocytes studied by overdetermined one-dimension

Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.

Related Articles Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.

NMR Biomed. 1990 Apr;3(2):59-63

Authors: Price WS, Kuchel PW

The membrane transport kinetics of the disubstituted phosphorus oxyacid, hypophosphite, were studied in human red cells under equilibrium exchange conditions. Hypophosphite is an analogue of both the bicarbonate and phosphate ions and is known to be rapidly transported across the human red cell membrane via the anion transport protein, Band 3. The hypophosphite ion is a particularly useful probe of Band 3-mediated membrane transport as the intracellular and extracellular species occur as distinct resonances in the 31P NMR spectrum; as a result the membrane potential may also be readily inferred. We applied 'overdetermined' one-dimensional exchange analysis to estimate the rates of exchange for influx and efflux. The apparent equilibrium exchange (ee) values Kmee for the hypophosphite efflux and influx were different and while the efflux parameters were not able to be unambiguously defined, the measured apparent influx kinetic transport parameters were Vmaxee = 1600 +/- 190 amol cell-1 s-1, and Kmee = 75 +/- 16 mM.

PMID: 2390454 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No