View Single Post
  #1  
Unread 08-21-2010, 04:03 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default The polyelectrolyte behavior of actin filaments: a 25Mg NMR study.

The polyelectrolyte behavior of actin filaments: a 25Mg NMR study.

Related Articles The polyelectrolyte behavior of actin filaments: a 25Mg NMR study.

Biochemistry. 1999 Jun 1;38(22):7219-26

Authors: Xian W, Tang JX, Janmey PA, Braunlin WH

Under physiological conditions, filamentous actin (F-actin) is a polyanionic protein filament. Key features of the behavior of F-actin are shared with other well-characterized polyelectrolytes, in particular, duplex DNA. For example, the bundle formation of F-actin by polyvalent cations, including divalent metal ions such as Mg2+, has been proposed to be a natural consequence of the polyelectrolyte nature of actin filaments [Tang and Janmey (1996) J. Biol. Chem. 271, 8556-8563]. This recently proposed model also suggests that weak interactions between F-actin and Mg2+ ions reflect a nonspecific trapping of counterions in the electric field surrounding F-actin due to its polyelectrolyte nature. To test this hypothesis, we have performed 25Mg NMR measurements in F-actin solutions. Based on the NMR data, we estimate that the rotational correlation times of Mg2+ are independent of the overall rotational dynamics of the actin filaments. Moreover, competitive binding experiments demonstrate a facile displacement of F-actin-bound Mg2+ by Co(NH3)63+. At higher Co(NH3)63+ concentrations, a fraction of the magnesium ions are trapped as actin filaments aggregate. ATP also competes effectively with actin filaments for binding to Mg2+. These results support the hypothesis that magnesium ions bind loosely and nonspecifically to actin filaments, and thus show a behavior typical of counterions in polyelectrolyte solutions. The observed features mimic to some extent the well-documented behavior of counterions in DNA solutions.

PMID: 10353833 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No