View Single Post
  #1  
Unread 08-14-2010, 04:19 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default The predictive accuracy of secondary chemical shifts is more affected by protein seco

Abstract Biomolecular NMR spectroscopy frequently employs estimates of protein secondary structure using secondary chemical shift (Î?δ) values, measured as the difference between experimental and random coil chemical shifts (RCCS). Most published random coil data have been determined in aqueous conditions, reasonable for non-membrane proteins, but potentially less relevant for membrane proteins. Two new RCCS sets are presented here, determined in dimethyl sulfoxide (DMSO) and chloroform:methanol:water (4:4:1 by volume) at 298 K. A web-based program, CS-CHEMeleon, has been implemented to determine the accuracy of secondary structure assessment by calculating and comparing Î?δ values for various RCCS datasets. Using CS-CHEMeleon, Î?δ predicted versus experimentally determined secondary structures were compared for large datasets of membrane and non-membrane proteins as a function of RCCS dataset, Î?δ threshold, nucleus, localized parameter averaging and secondary structure type. Optimized Î?δ thresholds are presented both for published and for the DMSO and chloroform:methanol:water derived RCCS tables. Despite obvious RCCS variations between datasets, prediction of secondary structure was consistently similar. Strikingly, predictive accuracy seems to be most dependent upon the type of secondary structure, with helices being the most accurately predicted by Î?δ values using five different RCCS tables. We suggest caution when using Î?δ-based restraints in structure calculations as the underlying dataset may be biased. Comparative assessment of multiple RCCS datasets should be performed, and resulting Î?δ-based restraints weighted appropriately relative to other experimental restraints.
  • Content Type Journal Article
  • DOI 10.1007/s10858-010-9400-5
  • Authors
    • Marie-Laurence Tremblay, Dalhousie University Department of Biochemistry & Molecular Biology Halifax NS B3H 1X5 Canada
    • Aaron W. Banks, Dalhousie University Department of Biochemistry & Molecular Biology Halifax NS B3H 1X5 Canada
    • Jan K. Rainey, Dalhousie University Department of Biochemistry & Molecular Biology Halifax NS B3H 1X5 Canada

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No