View Single Post
  #1  
Unread 11-25-2018, 06:02 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Improving yields of deuterated, methyl labeled protein by growing in H 2 O

Improving yields of deuterated, methyl labeled protein by growing in H 2 O

Abstract

Solution NMR continues to make strides in addressing protein systems of significant size and complexity. A fundamental requirement to fully exploit the 15Nâ??1H TROSY and 13Câ??1H3 methyl TROSY effects is highly deuterated protein. Unfortunately, traditional overexpression in Escherichia coli (E. coli) during growth on media prepared in D2O leads to many difficulties and limitations, such as cell toxicity, decreased yield, and the need to unfold or destabilize proteins for back exchange of amide protons. These issues are exacerbated for non-ideal systems such as membrane proteins. Expression of protein during growth in H2O, with the addition of 2H-labeled amino acids derived from algal extract, can potentially avoid these issues. We demonstrate a novel fermentation methodology for high-density bacterial growth in H2O M9 medium that allows for appropriate isotopic labeling and deuteration. Yields are significantly higher than those achieved in D2O M9 for a variety of protein targets while still achieving 75â??80% deuteration. Because the procedure does not require bulk D2O or deuterated glucose, the cost per liter of growth medium is significantly decreased; taking into account improvements in yield, these savings can be quite dramatic. Triple-labeled protein is also efficiently produced including specific 13CH3 labeling of isoleucine, leucine, and valine using the traditional ILV precursors in combination with an ILV-depleted mix of 2H/15N amino acids. These results are demonstrated for the membrane protein sensory rhodopsin II and the soluble proteins human aldoketoreductase AKR1c3, human ubiquitin, and bacterial flavodoxin. Limitations of the approach in the context of very large molecular weight proteins are illustrated using the bacterial Lac repressor transcription factor.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No