View Single Post
  #1  
Unread 01-06-2018, 11:17 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

Related Articles Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

Phytochem Anal. 2017 Nov;28(6):529-540

Authors: Coutinho ID, Moraes TB, Mertz-Henning LM, Nepomuceno AL, Giordani W, Marcolino-Gomes J, Santagneli S, Colnago LA

Abstract
INTRODUCTION: Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR.
OBJECTIVE: In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions.
METHODOLOGY: Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis.
RESULTS: The 1 H HR-MAS and CP-MAS 13 C{1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by 1 H HR-MAS.
CONCLUSIONS: The integration of the 1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd.


PMID: 28722224 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No