View Single Post
  #1  
Unread 10-10-2017, 04:48 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Analysis of Molecular Orientation in Organic Semiconducting Thin Films Using Static Dynamic Nuclear Polarization Enhanced Solid-State NMR

Analysis of Molecular Orientation in Organic Semiconducting Thin Films Using Static Dynamic Nuclear Polarization Enhanced Solid-State NMR


Molecular orientation in amorphous organic semiconducting thin film devices is an important issue affecting device performances. However, to date it has not been possible to analyze the "distribution" of the orientations. Although solid-state NMR (ssNMR) can provide information on the distribution of molecular orientations, the technique is limited because of the small amounts of sample in the devices and the low sensitivity of ssNMR. Here, we report the first application of dynamic nuclear polarization enhanced ssNMR (DNP-ssNMR) to orientational analysis of amorphous phenyldi(pyren-1-yl)phosphine oxide (POPy2). The 31P DNP-ssNMR spectra exhibited a sufficient signal-to-noise ratio to quantify the distribution of molecular orientations in amorphous films: the P=O axis of the vacuum-deposited and drop-cast POPy2 shows anisotropic and isotropic distribution, respectively. The different molecular orientations reflect the molecular origin of the different charge transport behaviors.

More...
Reply With Quote


Did you find this post helpful? Yes | No