Thread: U. of Ottawa NMR Facility Blog Boron Isotope Effects in Fluorine NMR Spectra
View Single Post
  #1  
Unread 08-11-2017, 08:52 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Boron Isotope Effects in Fluorine NMR Spectra

Boron Isotope Effects in Fluorine NMR Spectra

In previous posts on this BLOG, examples of 1H/2H and 12C/13C isotope effects were discussed. The figure below shows an example of a 10B/11B isotope effect observed in the 19F NMR spectrum of tetrabutyl ammonium tetrafluorobarate.
The spectrum clearly shows two resonances separated by 0.05 ppm with an intensity ratio of approximately 20:80 corresponding to the natural abundances of 10B and 11B, respectively. The low frequency resonance is due to 11BF4-. Since 11B is a spin I = 3/2 nuclide we observe a 1:1:1:1 quartet with J = 1.25 Hz corresponding to the one bond 19F - 11B coupling. The high frequency resonance is due to 10BF4-. Since 10B is a spin I = 3 nuclide we observe a very poorly resolved 1:1:1:1:1:1:1 septet with J ~ 0.4 Hz corresponding to the one bond 19F - 10B coupling.


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No