View Single Post
  #1  
Unread 06-25-2017, 02:42 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy.

Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy.

Related Articles Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy.

Sci Rep. 2017 Jun 23;7(1):4116

Authors: Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A

Abstract
The dynamic protein-protein and protein-ligand interactions of integral bitopic membrane proteins with a single membrane-spanning helix play a plethora of vital roles in the cellular processes associated with human health and diseases, including signaling and enzymatic catalysis. While an increasing number of high-resolution structural studies of membrane proteins have successfully manifested an in-depth understanding of their biological functions, intact membrane-bound bitopic protein-protein complexes pose tremendous challenges for structural studies by crystallography or solution NMR spectroscopy. Therefore, there is a growing interest in developing approaches to investigate the functional interactions of bitopic membrane proteins embedded in lipid bilayers at atomic-level. Here we demonstrate the feasibility of dynamic nuclear polarization (DNP) magic-angle-spinning NMR techniques, along with a judiciously designed stable isotope labeling scheme, to measure atomistic-resolution transmembrane-transmembrane interactions of full-length mammalian ~72-kDa cytochrome P450-cytochrome b5 complex in lipid bilayers. Additionally, the DNP sensitivity-enhanced two-dimensional (13)C/(13)C chemical shift correlations via proton driven spin diffusion provided distance constraints to characterize protein-lipid interactions and revealed the transmembrane topology of cytochrome b5. The results reported in this study would pave ways for high-resolution structural and topological investigations of membrane-bound full-length bitopic protein complexes under physiological conditions.


PMID: 28646173 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No