View Single Post
  #1  
Unread 05-05-2017, 09:46 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls #DNPNMR

From The DNP-NMR Blog:

Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls #DNPNMR

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Silverio, D.L., et al., Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helvetica Chimica Acta, 2017: p. n/a-n/a.


http://dx.doi.org/10.1002/hlca.201700101


Hyperpolarization by dynamic nuclear polarization relies on the microwave irradiation of paramagnetic radicals dispersed in molecular glasses to enhance the nuclear magnetic resonance (NMR) signals of target molecules. However, magnetic or chemical interactions between the radicals and the target molecules can lead to attenuation of the NMR signal through paramagnetic quenching and/or radical decomposition. Here we describe polarizing materials incorporating nitroxide radicals within the walls of the solids to minimize interactions between the radicals and the solute. These materials can hyperpolarize pure pyruvic acid, a particularly important substrate of clinical interest, while nitroxide radicals cannot be used, even when incorporated in the pores of silica, because of reactions between pyruvic acid and the radicals. The properties of these materials can be engineered by tuning the composition of the wall by introducing organic functionalities. This article is protected by copyright. All rights reserved.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No