View Single Post
  #1  
Unread 06-28-2016, 04:38 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default HP-Xe to go: Storage and transportation of hyperpolarized 129Xenon

From The DNP-NMR Blog:

HP-Xe to go: Storage and transportation of hyperpolarized 129Xenon


Repetto, M., et al., HP-Xe to go: Storage and transportation of hyperpolarized 129Xenon. J. Magn. Reson., 2016. 265: p. 197-199.


http://www.sciencedirect.com/science...90780716001142


Recently the spin–lattice relaxation time T1 of hyperpolarized (HP)-129Xe was significantly improved by using uncoated and Rb-free storage vessels of GE180 glass. For these cells, a simple procedure was established to obtain reproducible wall relaxation times of about 18 h. Then the limiting relaxation mechanism in pure Xe is due to the coupling between the nuclear spins and the angular momentum of the Xe–Xe van-der-Waals-molecules. This mechanism can be significantly reduced by using different buffer gases of which CO2 was discovered to be the most efficient so far. From these values, it was estimated that for a 1:1 mixture of HP-Xe with CO2 a longitudinal relaxation time of about 7 h can be expected, sufficient to transport HP-Xe from a production to a remote application site. This prediction was verified for such a mixture at a total pressure of about 1 bar in a 10 cm glass cell showing a storage time of T1 ? 9 h (for T 1 wall = ( 34 ± 9 ) h) which was transported inside a magnetic box over a distance of about 200 km by car.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No