View Single Post
  #1  
Unread 12-31-2015, 12:20 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution

From The DNP-NMR Blog:

Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution


Jacso, T., et al., Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution. Angewandte Chemie, 2012. 124(2): p. 447-450.


http://dx.doi.org/10.1002/ange.201104987


Structural information is key for understanding biological processes. Insoluble proteins, like membrane proteins and amyloid fibrils, are a large class of proteins that are underrepresented in the protein data bank (PDB). As of today, only 7% of all entries in the PDB refer to either a membrane protein or an amyloid fibril structure (membrane protein: 4994 entries; amyloid fibril: 67 entries; total number of entries: 70,303; http://www.rcsb.org/pdb/home/home.do). Given the fact that many drugs target membrane proteins, involved in signal transduction, [1] structural information is highly desirable for a better understanding of the underlying biochemical mechanisms.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No