View Single Post
  #1  
Unread 10-03-2015, 09:52 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy

From The DNP-NMR Blog:

Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy


Mollica, G., et al., Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. Angewandte Chemie, 2015. 127(20): p. 6126-6129.


http://dx.doi.org/10.1002/ange.201501172


A straightforward method is reported to quantitatively relate structural constraints based on 13C–13C double-quantum build-up curves obtained by dynamic nuclear polarization (DNP) solid-state NMR to the crystal structure of organic powders at natural isotopic abundance. This method relies on the significant gain in NMR sensitivity provided by DNP (approximately 50-fold, lowering the experimental time from a few years to a few days), and is sensitive to the molecular conformation and crystal packing of the studied powder sample (in this case theophylline). This method allows trial crystal structures to be rapidly and effectively discriminated, and paves the way to three-dimensional structure elucidation of powders through combination with powder X-ray diffraction, crystal-structure prediction, and density functional theory computation of NMR chemical shifts.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No