View Single Post
  #1  
Unread 01-16-2015, 09:09 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 18,070
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Chemical-Shift-Resolved19F NMR Spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-Enhanced Diagonal Suppressed Correlation Spectroscopy

From The DNP-NMR Blog:

Chemical-Shift-Resolved19F NMR Spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-Enhanced Diagonal Suppressed Correlation Spectroscopy


George, C. and N. Chandrakumar, Chemical-Shift-Resolved19F NMR Spectroscopy between 13.5 and 135 MHz: Overhauser-DNP-Enhanced Diagonal Suppressed Correlation Spectroscopy. Angewandte Chemie, 2014. 126(32): p. 8581-8584.


http://dx.doi.org/10.1002/ange.201402320


Overhauser–DNP-enhanced homonuclear 2D 19F correlation spectroscopy with diagonal suppression is presented for small molecules in the solution state at moderate fields. Multi-frequency, multi-radical studies demonstrate that these relatively low-field experiments may be operated with sensitivity rivalling that of standard 200–1000 MHz NMR spectroscopy. Structural information is accessible without a sensitivity penalty, and diagonal suppressed 2D NMR correlations emerge despite the general lack of multiplet resolution in the 1D ODNP spectra. This powerful general approach avoids the rather stiff excitation, detection, and other special requirements of high-field 19F NMR spectroscopy.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No