View Single Post
  #1  
Unread 01-15-2015, 06:10 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques.

Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques.

Related Articles Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques.

J Biomol Struct Dyn. 2015 Jan 14;:1-18

Authors: Naiyer A, Hassan MI, Islam A, Sundd M, Ahmad F

Abstract
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.


PMID: 25586676 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No