View Single Post
  #1  
Unread 10-02-2014, 06:36 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default CSI 2.0: a significantly improved version of the Chemical Shift Index

CSI 2.0: a significantly improved version of the Chemical Shift Index

Abstract

Protein chemical shifts have long been used by NMR spectroscopists to assist with secondary structure assignment and to provide useful distance and torsion angle constraint data for structure determination. One of the most widely used methods for secondary structure identification is called the Chemical Shift Index (CSI). The CSI method uses a simple digital chemical shift filter to locate secondary structures along the protein chain using backbone 13C and 1H chemical shifts. While the CSI method is simple to use and easy to implement, it is only about 75â??80Â*% accurate. Here we describe a significantly improved version of the CSI (2.0) that uses machine-learning techniques to combine all six backbone chemical shifts (13Cα, 13Cβ, 13C, 15N, 1HN, 1Hα) with sequence-derived features to perform far more accurate secondary structure identification. Our tests indicate that CSI 2.0 achieved an average identification accuracy (Q3) of 90.56Â*% for a training set of 181 proteins in a repeated tenfold cross-validation and 89.35Â*% for a test set of 59 proteins. This represents a significant improvement over other state-of-the-art chemical shift-based methods. In particular, the level of performance of CSI 2.0 is equal to that of standard methods, such as DSSP and STRIDE, used to identify secondary structures via 3D coordinate data. This suggests that CSI 2.0 could be used both in providing accurate NMR constraint data in the early stages of protein structure determination as well as in defining secondary structure locations in the final protein model(s). A CSI 2.0 web server (http://csi.wishartlab.com) is available for submitting the input queries for secondary structure identification.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No