View Single Post
  #1  
Unread 09-11-2014, 02:54 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Detecting a New Source for Photochemically Induced Dynamic Nuclear Polarization in the LOV2 Domain of Phototropin by Magnetic-Field Dependent (13)C-NMR Spectroscopy.

Detecting a New Source for Photochemically Induced Dynamic Nuclear Polarization in the LOV2 Domain of Phototropin by Magnetic-Field Dependent (13)C-NMR Spectroscopy.

Related Articles Detecting a New Source for Photochemically Induced Dynamic Nuclear Polarization in the LOV2 Domain of Phototropin by Magnetic-Field Dependent (13)C-NMR Spectroscopy.

J Phys Chem B. 2014 Sep 10;

Authors: Kothe G, Lukaschek M, Link G, Kacprzak S, Illarionov B, Fischer M, Eisenreich W, Bacher A, Weber S

Abstract
Phototropin is a flavin mononucleotide (FMN) containing blue-light receptor, which regulates, governed by its two LOV domains, the phototropic response of higher plants. Upon photoexcitation, the FMN cofactor triplet state, 3F, reacts with a nearby cysteine to form a covalent adduct. Cysteine-to-alanine mutants of LOV domains instead generate a flavin radical upon illumination. Here, we explore the formation of photochemically induced dynamic nuclear polarization (CIDNP) in LOV2-C450A of Avena sativa phototropin and demonstrate that photo-CIDNP observed in solution 13C-NMR spectra can reliably be interpreted in terms of solid-state mechanisms including a novel triplet mechanism. To minimize cross polarization, which transfers light-induced magnetization to adjacent 13C nuclei, our experiments were performed on proteins reconstituted with specifically 13C-labeled flavins. Two potential sources for photo-CIDNP can be identified: The photo-generated triplet state, 3F, and the triplet radical pair 3(F-•W+•), formed by electron abstraction of 3F from tryptophan W491. To separate the two contributions, photo-CIDNP studies were performed at four different magnetic fields ranging from 4.7 to 11.8 T. Analysis revealed that at fields < 9 T, both 3(F-•W+•) and 3F contribute to photo-CIDNP, whereas at high magnetic fields, the calculated enhancement factors of 3F agree favorably with their experimental counterparts. Thus, we have for the first time detected that a triplet state is the major source for photo-CIDNP in a photoactive protein. Since triplet states are frequently encountered upon photoexcitation of flavoproteins, the novel triplet mechanism opens up new means of studying electronic structures of the active cofactors in these proteins at atomic resolution.


PMID: 25207844 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No